
 

This project has received funding from the European Union’s Horizon 2020 research and 
innovation programme under Grant Agreement No 814761 

 

 

 

   

 

 

 

 

 

 

D3.2  
Toolbox of recommended data collection 

tools and monitoring methods and a 

conceptual definition of the Safety 

Tolerance Zone 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Safe tolerance zone calculation and interventions 

for driver-vehicle-environment interactions 

under challenging conditions 



D3.2 Toolbox of recommended data collection tools and monitoring methods and a conceptual definition of the 
Safety Tolerance Zone 

©i-DREAMS, 2020  Page 2 of 117 

 

Project identification 
 

Grant Agreement No 814761 

Acronym i-DREAMS 

Project Title Safety tolerance zone calculation and interventions for driver-vehicle-
environment interactions under challenging conditions 

Start Date 01/05/2019 

End-Date 30/04/2022 

Project URL www.idreamsproject.eu 

 

Document summary 
 

Deliverable No 3.2 

Deliverable Title Toolbox of recommended data collection tools and monitoring 
methods and a conceptual definition of the Safety Tolerance Zone 

Work Package 3 

Contractual due date 30.04.2020 

Actual submission date 30.04.2020 

Nature Report 

Dissemination level Public 

Lead Beneficiary NTUA 

Responsible Author Christos Katrakazas, Eva Michelaraki, George Yannis (NTUA) 

Contributions from Christos Katrakazas, Eva Michelaraki, George Yannis (NTUA) 

Susanne Kaiser, Nina Senitschnig (KFV) 

Veerle Ross, Muhammad Adnan, Kris Brijs, Tom Brijs (UHasselt) 

Rachel Talbot, Fran Pilkington-Cheney, Ashleigh Filtness, Graham 
Hancox (Loughborough University) 

Eleonora Papadimitriou (TU Delft) 

André Lourenço, Cátia Gaspar, Carlos Carreiras (CardioID) 

Christelle Al Haddad, Kui Yang; Constantinos Antoniou (TUM) 

Chiara Gruden (UM) 

Petros Fortsakis, Eleni Konstantina Frantzola (OSeven Telematics) 

Rodrigo Taveira (BARRA) 

 

Please refer to the document as: 

Katrakazas C., et al. (2020). Toolbox of recommended data collection tools and monitoring methods 
and a conceptual definition of the Safety Tolerance Zone. Deliverable 3.2 of the EC H2020 project i-
DREAMS; 

 

http://www.idreamsproject.eu/


D3.2 Toolbox of recommended data collection tools and monitoring methods and a conceptual definition of the 
Safety Tolerance Zone 

©i-DREAMS, 2020  Page 3 of 117 

Revision history (including peer review & quality control) 

Version Issue date % Complete Changes Contributor(s) 

v1.0 07/01/2020 0 Initial deliverable structure Christos Katrakazas 

v1.3 18/02/2020 80% First draft See ‘contributions from 
above’ 

v1.7 03/03/2020 100% Full draft for review As above 

V1.9 10/04/2020 100% Revised according to 
external and internal review 

As above 

     

     

     

     

 

Disclaimer 

The content of the publication herein is the sole responsibility of the publishers and it does not 
necessarily represent the views expressed by the European Commission or its services. 

While the information contained in the document is believed to be accurate, the authors(s) or any 
other participant in the i-DREAMS consortium make no warranty of any kind with regard to this 
material including, but not limited to the implied warranties of merchantability and fitness for a 
particular purpose. 

Neither the i-DREAMS Consortium nor any of its members, their officers, employees or agents shall 
be responsible or liable in negligence or otherwise howsoever in respect of any inaccuracy or 
omission herein. 

Without derogating from the generality of the foregoing neither the i-DREAMS Consortium nor any 
of its members, their officers, employees or agents shall be liable for any direct or indirect or 
consequential loss or damage caused by or arising from any information advice or inaccuracy or 
omission herein. 

 

Copyright 

© i-DREAMS Consortium, 2019-2022. This deliverable contains original unpublished work except 
where clearly indicated otherwise. Acknowledgement of previously published material and of the 
work of others has been made through appropriate citation, quotation or both. Reproduction is 
authorised provided the source is acknowledged. 

 

  



D3.2 Toolbox of recommended data collection tools and monitoring methods and a conceptual definition of the 
Safety Tolerance Zone 

©i-DREAMS, 2020  Page 4 of 117 

Table of Contents 
 

Revision history (including peer review & quality control) .............................................. 3 

Disclaimer ............................................................................................................................ 3 

Copyright ............................................................................................................................. 3 

List of Figures...................................................................................................................... 6 

List of Tables ....................................................................................................................... 6 

Glossary and abbreviations ................................................................................................ 8 

Executive summary ............................................................................................................. 9 

1 Introduction ...................................................................................................................10 

About the i-DREAMS project ..........................................................................................10 

About this report .............................................................................................................11 

2 Data collection tools ......................................................................................................12 

2.1 Consolidation of previous project findings ..............................................................12 

2.2 Overview of available technologies ........................................................................18 

2.3 Recommendations on driver measurements per mode ..........................................43 

2.3.1 Cars ................................................................................................................43 

2.3.2 Trucks and buses ............................................................................................44 

2.3.3 Trains and trams .............................................................................................46 

2.4 Recommendations on environment monitoring .......................................................47 

2.4.1 Cars ................................................................................................................47 

2.4.2 Trucks and buses ............................................................................................48 

2.4.3 Trains and trams .............................................................................................49 

2.5 Implications for the i-DREAMS platform .................................................................50 

3 Thresholds of interest ....................................................................................................53 

3.1 General ..................................................................................................................53 

3.1.1 Definition of the indicators ...............................................................................53 

3.1.2 Considerations about buses and trucks ...........................................................55 

3.1.3 Considerations on trains and tramways ...........................................................55 

3.1.4 Theoretical connection among the thresholds and the three STZ stages.........56 

3.1.5 Ranges and thresholds ...................................................................................57 

3.2 Recommendations on triggering interventions ........................................................58 

3.2.1 Driving style recognition and their incorporation in i-DREAMS real-time 

intervention approach ....................................................................................................58 

Driving style recognition and STZ concept.....................................................................59 

3.2.2 i-DREAMS technology and risk indicators for driving styles with 

recommendation of threshold values .............................................................................61 

4 The mathematical model of the STZ ..............................................................................63 



D3.2 Toolbox of recommended data collection tools and monitoring methods and a conceptual definition of the 
Safety Tolerance Zone 

©i-DREAMS, 2020  Page 5 of 117 

4.1 Brief description of the STZ ....................................................................................63 

4.2 Problem formulation ...............................................................................................64 

4.3 Literature Review on relevant models.....................................................................64 

4.3.1 Machine Learning vs Other Conventional Statistical Models ...........................65 

4.3.2 Approaches concerned with safe/dangerous driving........................................65 

4.3.3 Discussion and Recommendations for i-DREAMS ..........................................71 

4.3.4 Approaches concerned with abnormal driving .................................................72 

4.3.5 Discussion and Recommendations for i-DREAMS ..........................................80 

4.4 Mathematical modelling ..........................................................................................81 

4.4.1 Brief description of algorithms .........................................................................81 

4.4.2 Application to STZ modelling ...........................................................................86 

4.5 Practical considerations .........................................................................................97 

Use of driving simulator and data collection period .................................................98 

Experimentation of classification algorithm .............................................................98 

Experimentation and change of risk indicators and their thresholds .....................98 

Usefulness of driving style recognition into post-trip interventions .......................98 

Data Labelling and specification of specific scenarios for STZ modelling .............99 

5 Conclusions and next steps ......................................................................................... 100 

References ........................................................................................................................ 102 

Annex A: Detailed literature review of models and techniques .................................... 109 

 

  



D3.2 Toolbox of recommended data collection tools and monitoring methods and a conceptual definition of the 
Safety Tolerance Zone 

©i-DREAMS, 2020  Page 6 of 117 

List of Figures 

Figure 1: Conceptual framework of the i-DREAMS platform .................................................10 

Figure 2: CardioWheel and extracted parameters ................................................................18 

Figure 3: Possible wearables (PulseOn – left; Emotibit – right) .............................................19 

Figure 4: Feel wearable technology ......................................................................................19 

Figure 5: Mobileye collision avoidance system .....................................................................20 

Figure 6: Dashcams – (left - commercial solution; right - CardioID Dashcam & GPS)...........20 

Figure 7: OBD-II dongles (Geotab – left; ELM327 – right) ....................................................21 

Figure 8: IoT platforms (Balena – left; CardioID GW – right) .................................................21 

Figure 9: O7APP trip details screen ......................................................................................24 

Figure 10: O7APP map visualization ....................................................................................24 

Figure 11: O7 portal visualization of driving behavior metrics ...............................................24 

Figure 12: Sliding time windows (TW) of Normal and Abnormal driving style episodes for a 

particular driver (green colour present an episode of normal, red colour represent an episode 

of Abnormal driving) .............................................................................................................61 

Figure 13: SEMs depicting standard linear regression model with two variables ..................82 

Figure 14: A BN example .....................................................................................................84 

Figure 15: An example of a DBN (Bold arrows depict causalities in the same time slice while 

dashed lines depict temporal dependencies) ........................................................................84 

Figure 16: Long-Short Term Memory block graphical representation (Yan, 2016) ................85 

Figure 17: Path diagram of a SEM approach to i-Dreams .....................................................87 

Figure 18: Data-driven approach methodology, adapted from Antoniou et al. (2013) ...........88 

Figure 19: Full path diagram of hybrid choice and latent variable model of Safety Tolerance 

Zone .....................................................................................................................................90 

Figure 20: The COV Variables ..............................................................................................93 

Figure 21: The relationship between the variables in one time moment ................................94 

Figure 22: The time dependencies between the layers .........................................................94 

Figure 23: The proposed DBN for STZ modelling .................................................................95 

Figure 24: STZ modelling using LSTMs ................................................................................97 

 

List of Tables 

Table 1: Driver characteristic variables recommended to collect from i-DREAMS participants, 

suggested measurement method and potential purpose of use in the project are also 

provided ...............................................................................................................................15 

Table 2: Sampling frequency of values of the parameters provided by CardioID  (“Event” 

denotes that a measurement is available, once a corresponding event is detected) .............22 

Table 3: List of available driver monitoring tools provided by tech-partners ..........................26 

Table 4: Overview of available measurements in cars ..........................................................32 

Table 5: Overview of available measurements in trucks and buses ......................................34 

Table 6: Overview of available measurements in trams ........................................................37 

Table 7: Overview of available measurements in trains ........................................................40 



D3.2 Toolbox of recommended data collection tools and monitoring methods and a conceptual definition of the 
Safety Tolerance Zone 

©i-DREAMS, 2020  Page 7 of 117 

Table 8: Acceleration, minimum distance and TTC thresholds used in various existing 

systems ................................................................................................................................54 

Table 9: Thresholds for reaction time and deceleration distinguished for different severity 

levels (Lehmer et al., 2005) ..................................................................................................55 

Table 10: Proposed thresholds for i-DREAMS modes ..........................................................57 

Table 11: Risk indicators/variables and their threshold values to recognize abnormal driving 

behavior ...............................................................................................................................61 

Table 12: Key words, screened and included papers per factor analysed.............................65 

Table 13: Summary of driving behavior models with positive and negative aspects .............77 

Table 14: Different STZ levels according to task demand and coping capacity .....................96 

Table 15: List of specific risk scenarios ................................................................................99 

Table 16: List of proposed driver monitoring indicators along with the available threshold 

values (✔: A threshold can be defined but no standard value is indicated by the literature or 

technology company) ......................................................................................................... 100 

Table 17: Summary of models and techniques of related driver behavior systems ............. 109 



D3.2 Toolbox of recommended data collection tools and monitoring methods and a conceptual definition of the Safety Tolerance Zone 

©i-DREAMS, 2020  Page 8 of 117 

Glossary and abbreviations 

Abbreviation Description Abbreviation Description Abbreviation Description Abbreviation Description 

AR-HMM Auto-Regressive Hidden Markov Model  DT Decision Tree LDW Lane Departure Warning PRC Percent Road Centre 

ATP Automatic Train Protection DWT Discrete Wavelet Transform LPM Length Proportion of Merging  RF Random Forest  

AWS Automatic Warning Systems ECG  Electrocardiogram LSTM Long Short-Term Memory RNN Recurrent Neural Network  

BGGMM 
Bounded Generalized Gaussian Mixture 

Model  
EDA  Electrodermal Activity 

LVT Visual Pursuit Test  SDLP Standard Deviation of Lane position 

BN Bayesian Network EEG  Electroencephalogram MGD Multivariate Gaussian Distribution SEM Structural Equation Model 

BRT Brake Reaction Time  ESRA European Society of Regional Anaesthesia ML Machine Learning SHRP2 Strategic Highway Research Program 2  

BSSS Brief Sensation Seeking Scale FCNN Fully Connected Neural Network MLE Maximum Likelihood Estimation SLI Speed Limit Indication 

CAV Connected and Autonomous Vehicle FCW Forward Collision Warning MLP Multi-Layer Perceptron SSD Single Shot Multibox Detector 

CNN Convolutional Neural Network  FNN  Fuzzy Neural Network MMTC Modified Margin To Collision SSM Surrogate Safety Measure 

COV Context Operator Vehicle  GMM Gaussian Mixture Model  MNL Multinomial Logit Model SSS Sensation Seeking Scale  

CRN Collision Risk Network-level GSR Galvanic Skin Response MTC Margin To Collision SSVS Short Schwartz’s Value Survey 

CRV Collision Risk Vehicle-level TH Time Headway MTTC Modified Time-To-Collision  STZ Safety Tolerance Zone  

CW CardioWheel HIOA Hybrid Input/Output Automaton MV Merging Vehicle SVM Support Vector Machine  

DAS Driving Anger Scale HLM Hierarchical Linear Model MVPLN Multivariate Poisson Log-Normal Model  TTA Time To Accident 

DBN Dynamic Bayesian Network HMM Hidden Markov Model NB Naive Bayes  TET Time Exposed-TTC 

DBQ Driver Behavior Questionnaire  HMM-GA Hidden Markov Model-Genetic Algorithm NEST Naturalistic Engagement in Secondary Task  TLC Time To Line Crossing 

DCM Discrete Choice Model HR Heart Rate NL Nested Logit  TPB Theory of Planned Behavior 

DDCM Dynamic Discrete Choice Model HRV Heart Rate Variability  O7APP OSeven application TPS Train Protection System 

DEA Data Envelopment Analysis HSS Hybrid State System O7SDK OSeven Software Development Kit TPWS Train Protection and Warning System  

DH Distance Headway IDM Intelligent Driver Model 
PCW Pedestrian Collision Warning 

t-SNE 
t-Distributed Stochastic Neighbor 

Embedding 

DFT  Discrete Fourier Transform IoT Internet of Things PERCLOS  Percentage of eyelid closure TTC Time To Collision 

DRAC Deceleration Rate to Avoid Crash k-NN k-Nearest Neighbor  PERLOOK Percentage of time spent not looking ahead  TTZ Time To Zebra 

DSI Differential Stress Inventory  KSS Karolinska Sleepiness Scale PET Post Encroachment Time UFCW Urban Forward Collision Warning 

DSM Driver Status Monitoring LCS Latent Choice Set PPG Photoplethysmogram WP Work Package 



D3.2 Toolbox of recommended data collection tools and monitoring methods and a conceptual definition of the 
Safety Tolerance Zone 

©i-DREAMS, 2020  Page 9 of 117 

Executive summary 

This deliverable aims to present the practical conceptualisation of the Safety Tolerance Zone 

(STZ) in order for the project to transition from a theoretical framework for operational design 

into the practical implementation of the STZ estimation in the subsequent Work Packages 

(WPs) of the project. In order for this transition to be outlined, the proposed measurements 

and technologies for driver monitoring and evaluation need to be contrasted with the sensing 

capabilities of the technologies available within the project and an appropriate modelling 

framework must be defined for the STZ.  

In order to assure the real-time estimation of the STZ levels and promptly/swiftly trigger 

adequate interventions, deviations from normal driving must also be identified. Accordingly, a 

detailed description of driver monitoring measurements which help to determine the STZ levels 

as well as identify the abnormal driving, is provided within the deliverable. Where applicable, 

recommendations on measurements along with the corresponding thresholds for detection of 

events per mode are provided. More specifically, risk factors (e.g. actual speed, harsh 

acceleration and braking, or aggressiveness) associated with the STZ as well as indicators of 

abnormal driving (e.g. ECG, hands on the wheel, fatigue, sleepiness) are initially specified. To 

obtain available thresholds in order to convey the idea of creating a starting point for defining 

the STZ levels and abnormal driving, a literature review was conducted. The review 

demonstrated that thresholds are mostly employed detecting high speeds, short time 

headways and harsh acceleration or braking events in cars. However, limited information on 

thresholds was found for trucks, buses and rails. Additionally, considerations on how to exploit 

the available technologies (i.e. CardioID, OSeven, Mobileye) in the experimental setup for all 

transport models are highlighted. 

The final section of the deliverable deals with the mathematical formulation of the STZ in an 

appropriate modelling framework. Following a thorough literature review of models dealing with 

driver behavior and collision risk modelling in real-time, the most prominent approaches were 

found to be Dynamic Bayesian Networks or DBNs (a probabilistic graphical time-series model) 

and Long Short-Term Memory networks or LSTMs (a deep neural network formulation). In 

order to allow for more flexibility, and keeping in mind that within the project, post-trip driver 

evaluations are also to be designed, two approaches, namely Structural Equation Models 

(SEMs) and Discrete Choice Models (DCMs) were also proposed that provide “static” 

predictions, in contrast with DBNs and LSTMs which work dynamically (i.e. in real-time). For 

each of the aforementioned methods or techniques, a brief description of their underpinning 

procedure is presented, followed by their application for the identification of the STZ levels 

along with abnormal driving. The most significant practical considerations concerning the 

modelling of the STZ include the experimentation of the classification algorithm once data 

become available, the flexibility of the risk indicators with their respective thresholds as well as 

the problem of data labelling and the specification of driving scenarios, in which STZ levels are 

most distinctive.  

Finally, the project subsequent steps comprise the coding of the models, in an appropriate 

programming framework, and an extensive experimental testing and tuning of the models 

using data from driving simulator and on-road trials, in order to guarantee the effective and 

correct real-time identification of the STZ levels as well as the proper triggering of interventions 

for road safety enhancement. 



D3.2 Toolbox of recommended data collection tools and monitoring methods and a conceptual definition of the 
Safety Tolerance Zone 

©i-DREAMS, 2020  Page 10 of 117 

1 Introduction  

About the i-DREAMS project 

The overall objective of the i-DREAMS project is to setup a framework for the definition, 

development, implementation, testing and validation of a context-aware safety envelope for 

driving (‘Safety Tolerance Zone’), within a smart Driver, Vehicle & Environment Assessment 

and Monitoring System (i-DREAMS). Taking into account driver background factors and real-

time risk indicators associated with the driver state, driving performance and driving task 

complexity, a continuous real-time assessment will be made to evaluate and determine if a 

driver is within acceptable boundaries of safe operation. Accordingly, safety-oriented 

interventions will be developed to avoid and mitigate increasing risk scenarios by promptly 

informing, advising or warning the driver in real-time and in an effective way as well as on an 

aggregated level, after driving, through an app- and web-based gamified coaching platform, 

thus reinforcing the acquisition of safer driving habits/behaviors. 

 

Figure 1 reviews the conceptual framework to be tested in a simulator study during the three 

stages of the on-road trials in Belgium, Germany, Greece, Portugal and the United Kingdom 

on a total of 600 participants representing car, bus, truck and rail drivers, respectively. 

Specifically, the Safety Tolerance Zone (STZ) is subdivided in three phases, i.e. ‘Normal 

driving phase’, the ‘Danger phase’, and the ‘Avoidable accident phase’. For the real-time 

evaluation of the STZ, the monitoring module in the i-DREAMS platform will continuously 

collect and process data for all the variables related to the vehicle and driving environment 

context. Regarding the operator, however, continuous data registration and processing will be 

mainly restricted to mental state and behavior. Finally, it is worth mentioning that slow 

changing, constant, static, or quasi-static variable data pertaining operator competence, 

personality, socio-demographic background and health status, will be collected via survey 

questionnaires.  

 
Figure 1: Conceptual framework of the i-DREAMS platform 
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The key output of the project will be an integrated set of monitoring and communication tools 

for safety intervention and driver support, including in-vehicle assistance, feedback and 

notification tools as well as a gamified platform for performance review, both self-determined 

and fleet manager goal setting associated with rewarding incentive schemes, coaching and 

tailoring training along with community building tools. Finally, a user-licence Human Factors 

database with anonymized data from both simulator and on-road experiments will be 

developed.1  

 

About this report 

The STZ is the core concept of the i-DREAMS project. This report aims to explicitly describe 

the practical conceptualisation of the STZ to develop the theoretical framework for operational 

design, presented in Deliverable 3.1, towards a fully functional methodology to be implemented 

in the forthcoming experimental setups (i.e. in WP4). In order to fulfil this purpose a trilateral 

correspondence is needed between the list of available technologies, the factors and indicators 

that need to be monitored (as described in Deliverable 2.1) and the translation of the 

measurements into meaningful STZ levels and the triggering of interventions (Deliverable 2.2). 

As a result, the ultimate outcomes of this deliverable will be the provision of a toolbox, a list of 

viable options of the most useful data collection and monitoring tools as well as the suggestion 

of a mathematical framework to realize the STZ in real-world driving situations. With regards 

to the state-of-the-art measuring tools, several physiological and behavioral indicators, such 

as distraction/inattention, fatigue, emotions or forward collision warning are proposed for real-

time, while performance measurements such as speeding, harsh acceleration, braking or risky 

hours driving are also mentioned for post-trip processing. 

 

Furthermore, as different aspects related to the actual driving context (e.g. driver stress, time 

schedules, workload, frustration) can explain why drivers deviate from their “normal” way of 

driving, by accepting higher risks and engaging in increased risky driving behaviors (e.g. 

speeding, harsh accelerations, dangerous overtaking), the identification and detection of 

abnormal driving episodes becomes one of the most relevance to STZ estimation. 

 

Chapter 2 covers recommendations on driver and environment monitoring measurements, 

enabling the STZ estimation. Based on these recommendations, Chapter 3 provides a list of 

thresholds for measurements to detect STZ levels and abnormal driving. The major part of this 

deliverable is dedicated to the mathematical modelling of the STZ (Chapter 4), where three 

different methodological formulations are given in order to turn the available measurements 

into meaningful information on the level of driving safety. Finally, Chapter 5 draws practical 

conclusions and gives recommendations on the following steps of the project. 

 

                                                           
2 Further general project information can be found on the website: https://idreamsproject.eu 

https://idreamsproject.eu/
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2 Data collection tools 

 

2.1 Consolidation of previous project findings  

This chapter aims at revisiting the pre-selection of driving measuring tools discussed in 

project’s Deliverable 2.1 (Kaiser et al., 2020) in order to select the most appropriate to be used 

for STZ estimation. The preceding, underlying work was conducted by means of 

comprehensive literature search and technology review in order to capture the state-of-the-art 

approaches to driver state and environment monitoring and was documented …. , as documented 

2.1 

The i-DREAMS modes – needs for completing the picture 

Regarding state-of-the-art measuring tools for monitoring drivers and the driving environment, 

most of available evidence concerns car driving. Wherever possible, a separate assessment 

was made for the other i-DREAMS modes - bus, truck, train and tram. In its most basic version 

this conveys an assumption on the transferability of conclusions for passenger vehicles across 

other modes. Nevertheless, such assumptions will still have to be confirmed by actual 

application and, if necessary, adapted or finely tuned in an iterative process.  

Driver state monitoring 

The term “driver state” is not a universal concept with a standard definition, nor is “mental 

state”. State, however, is largely perceived as the current condition that can change 

continuously. Within this project, mental state comprises safety relevant cognitive aspects 

(attention, fatigue, workload) and emotional aspects (including arousal and stress), although 

complex interactions can be established between those two categories. Emotions, for 

example, can shift driver's attention and disrupt his focus. Measuring constituent constructs – 

as opposed to measuring one aggregated overall mental state – is important for this work due 

to a requirement to effectively provide appropriate and necessary real-time and post-trip 

interventions. Therefore, the groundwork for measuring the drivers’ mental state is focused on 

attention and distraction, fatigue and sleepiness, emotions and stress as well as impairment.  

Distraction and inattention  

Most of the literature on real-time measures of distraction and inattention concerns visual 

distraction such as a diverted view as well as cognitive distraction which is also reflected in 

vision related variables (e.g. narrowed scanning patterns, PRC: percent road centre). Eye-

tracking systems are commonly used for measuring gaze behavior (viewing and scanning 

patterns). Head tracking facilitates detecting drivers not attending to the roadway with the 

corresponding indicator PERLOOK (percentage of time spent not looking ahead per time 

interval). Distraction due to the use of a mobile phone can be tracked via the activity of the 

device itself. Surrogate safety measures of distraction and attention include lateral and 

longitudinal control of the vehicle and can be used to identify deviations from normal driving. 

Those parameters are already essential parts of the i-DREAMS system. However, the source 

of impairment is harder to determine. Therefore, additional equipment for the trials might prove 

beneficial, especially in view of selecting the most appropriate intervention. An eye tracking 

system or plain camera would be suitable to measure the discussed parameters. While eye 

tracking requires calibration of the system and thus support from research staff, cameras facing 

the drivers require well trained algorithms to reliably detect events of interest. Both limitations 

pose a substantial challenge, requiring careful consideration. 

Fatigue and sleepiness 
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As seen for distraction, fatigue and drowsiness/sleepiness2 are most commonly measured by 

means of eye tracking, with blink rate and PERCLOS (percentage of eyelid closure) proven to 

be the most robust ocular indicators. Heart rate (HR) and heart rate variability (HRV) can be 

considered promising physiological indicators for fatigue and drowsiness, although their 

robustness towards inter-individual differences and confounding factors can be sometimes 

challenged. Both methods can be considered minimally invasive, since eye tracking is contact 

free and HR measures can be derived from CardioWheel technology, which is available for the 

i-DREAMS project. Nevertheless, it should be mentioned that CardioWheel may not be utilized 

for passenger cars or rails, so it could be useful to have some kind of wearable measure for 

these. The gold standard for monitoring fatigue and sleepiness, however, is considered to be 

EEG (electroencephalogram). Despite EEG equipment is getting easier to use it still can be 

considered highly intrusive and thus should be excluded from consideration for i-

DREAMS’DREAMS’DREAMS’ system. As for driving performance measures, lane deviation 

speed variability, steering wheel movements and following distance can be reliably used as a 

surrogate measure to infer about sleepiness. However, especially for fatigue and sleepiness, 

a timely warning or instruction should be given to the driver before driving performance is 

impacted.  

 

Since all the current behavioral and physiological real-time measurement methods have 

strengths and drawbacks, leaving room for improvement, the use of multiple measures and 

indicators could help increase reliability and validity. Again, an eye tracking or camera system 

to monitor the driver’s level of sleepiness/fatigue is recommended to supplement the 

CardioWheel. 

Emotions 

Measuring emotions is a challenging endeavour since the term ‘emotion’ is rather an umbrella 

term than an agreed upon concept being commonly used to refer driving impacts that affect, 

mood, stress etc. For valid measurements, exact definitions and disclosing theoretical 

assumptions are important. Among the studies reviewed for the project, 

anger/frustration/aggression, stress and fear/anxiety are the best studied emotion categories, 

indicated by the combination of levels of arousal and valence. Physiological signals are mainly 

used to determine levels of emotions, most frequently by means of electrodermal activity and 

cardiac measurement, such as electrocardiogram, HR or HRV. Like attention and 

fatigue/sleepiness, real-time emotion measuring does not yet have a standard procedure that 

many can agree upon. Therefore, a complementing measure in addition to CardioWheel or a 

smart wristband could facilitate ensuring reliability and validity of measurements. This could 

be a wrist worn Electrodermal Activity (EDA) sensor or a (thermal) camera for facial feature 

tracking. 

Impairment 

Continuous monitoring of driver impairment due to substance use (alcohol, drugs, medicines) 

is still under development or lack sufficient validity. Nonetheless, wearables with touch-, 

breath- and ocular-based sensors are entering the market. In addition, the impact of drugs and 

medicines on the driver’s state and thus driving behavior is much less clear compared to 

alcohol. As for alcohol, wrist-worn transdermal sensors have the most potential. It should be 

noted that this would require yet another device for the i-DREAMS participants. What is more, 

from an ethical viewpoint the instruction to the participant through the i-DREAMS platform 

                                                           
2 While fatigue results from a monotonous task or performing a task for a long period of time, sleepiness 
or drowsiness is caused by insufficient or poor sleep. The latter can only be mitigated by sleeping 
whereas fatigue is overcome already by quitting the task. 
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should be the discontinuation of driving. As a result, it can be assumed that impairment will not 

be focused on within the i-DREAMS project. 

Ensuring reliability and validity of driver state monitoring 

Reliability and validity of the different measurement methods are a major concern for all the 

driver states described above. Although respective technological and research progress 

rapidly, desired levels are not yet achieved by default. This calls for using multiple 

physiological/behavioral measurement methods and thus, complementing the cardiac 

measure derived from the CardioWheel to elevate the quality criterions. One further argument 

is that no physiological/behavioral is the measure of choice for all of the constructs (attention, 

fatigue/sleepiness, emotions). 

Conclusions from the technology review for driver state monitoring 

Measuring tools for monitoring the driver’s mental state were identified on basis of the reviewed 

scientific studies. Those tools were subject to review with the aim of assessing their expediency 

for application in both the simulator and on-road tests. The criteria for the assessment are 

intrusiveness, validity and reliability (if available), the number of constructs covered (attention, 

fatigue/sleepiness and emotions) and overall fit for setting up the tests.  

 

Some tools used by researchers in the past were excluded from further scrutiny if the 

manufacturer or vendor went out of business or the equipment in question was never 

commercially available (prototype or self-use only). Furthermore, all EEG equipment was 

excluded as the level of intrusiveness is judged to be high. While an EEG cap is acceptable in 

a simulator setting, it is inappropriate for the on-road testing in terms of acceptability but also 

feasibility with on-going support from the project staff would be required for the set-up. This, 

furthermore, applies to eye-tracking devices as well. 

 

Considering the various criteria, biometric steering wheels (measuring HR) as well as wrist 

worn wearables (measuring EDA and HR) turned out most promising. Sensors placed at the 

steering wheel are among the most non-intrusive options, with the exception of trams or trains. 

Wearables for the wrist are also excessively intrusive and can be easily applied to rail modes. 

However, concerning on-road tests, the latter must be put on by the participant for each drive, 

hence potentially compromising the naturalistic driving character that is desirable. What’s 

more, for measuring attention and fatigue, neither EDA nor HR are the most robust indicators. 

 

Whereas a biometric wheel is available through the project partner CardioID, complementary 

wearables can be considered low-cost. For instance, ‘Empatica E4’ device was used in several 

studies (E4 wristband, 2019). Comparable devices should, however, be considered, such as 

‘EmotiBit’ (EmotiBit, 2019), which has the comparative advantage of being independent from 

the company’s cloud and thus easier to integrate with the on-board gateway. 

Traits and driver characteristics 

Several personal factors that determine the driver’s capacity to cope with the task demand 

change continuously within the timescale of a single journey and therefore, their evaluation in 

real-time, while driving, is unnecessary. Factors such as personality traits, driving experience 

or health status, known to affect driving safety, are relatively stable over time. Although those 

traits and personal characteristics are not measured in real-time, they are important for i-

DREAMS and will potentially be assessed in a priori. This data will serve different purposes: 

some are important control variables facilitating the improvement of the i-DREAMS platform, 
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some might even be investigated for modelling the Safety Tolerance Zone. Nevertheless, as 

traits and driver characteristics are mostly “static”, in terms of one-off measurements, traits and 

driver characteristics will be solely considered for triggering the interventions, rather than for 

modelling the STZ levels. The reason behind this assumption is that for example, risky drivers 

will basically get warnings under less urgent kinematic conditions, which may result in them 

finding the warnings to be annoying. All captured traits and characteristics will be compiled 

within the i-DREAMS research data base and should be considered for the customization of 

interventions. The relevant constructs and variables pertain to the following categories: 

 Competences 

 Personality traits 

 Habitual behavior  

 Health condition and factors 

 Socio-demographic factors 

 

Some of the factors can simply be queried in a questionnaire (age, year of obtaining driving 

permit etc.) others require standardised, validated and normed performance testing (e.g. 

reactivity). Objectivity and validity are obvious arguments in favour of performance and 

personality tests, while costs and required equipment are often the disadvantages of such 

tests. In summary, the decision results from the optimal quality of data and efficiency. Table 1 

provides an overview of personal factors suggested to be measured, including recommended 

methods and what purpose this data could serve. Details on the mentioned tests and surveys 

can be found in i-DREAMS’ Deliverable 2.1 (Kaiser et al., 2020). 

 

Table 1: Driver characteristic variables recommended to collect from i-DREAMS participants, suggested 
measurement method and potential purpose of use in the project are also provided 

Category Construct 

Recommended 
measurement 

method 
Potentially include 

in STZ concept 

Validation of inter-individual 
differences in real-time measure, 

control variables 

Potential for 
customized 
intervention 

Competences Emotional regulation Perth Emotion 
Regulation 

Competency 
Inventory (self-

report 
questionnaire) 

no yes no 

Stress regulation Differential stress 
Inventory (DSI) 

no yes no 

Attention regulation Trail making test 
(Version Trail A) 

no yes no 

Risk-taking - Sensation 
Seeking Scale 

(SSS-V) - Items 
from the 

Manchester Driver 
Behavior 

Questionnaire 
(DBQ) 

no yes yes 

Hazard perception Perception of 
hazards and 
coping test  

yes no yes 



D3.2 Toolbox of recommended data collection tools and monitoring methods and a conceptual definition of the 
Safety Tolerance Zone 

©i-DREAMS, 2020  Page 16 of 117 

Category Construct 

Recommended 
measurement 

method 
Potentially include 

in STZ concept 

Validation of inter-individual 
differences in real-time measure, 

control variables 

Potential for 
customized 
intervention 

Reactivity Reaction Test 
(RT) 

yes no yes 

Visual perception, 
orientation 

Visual Pursuit 
Test (LVT) 

no no yes 

Personality Sensation seeking Brief Sensation 
Seeking Scale 

(BSSS) 

no no yes 

Anger proneness Deffenbacher 
Driving Anger 
Scale (DAS) 

no yes no 

Habitual/past 
driving behavior 

Speeding DBQ subscale 
‘ordinary 

violations’ 
- ESRA2 

no yes no 

Tailgating - DBQ item 23 
- ESRA2 

no yes no 

Fatigued driving ESRA2 no yes no 

Distracted driving ESRA2 no yes no 

Aggressive driving - ADBQ subscale 
‘conflict 

behavior’ 
- DDDI, subscale 

‘aggressive 
driving' 

no yes no 

Health, 
diseases 

Neurological Question on any 
known conditions 

no no no 

Musculoskeletal Question on any 
known conditions 

no no no 

Cardio-vascular Question on any 
known conditions 

no yes no 

Sleep pattern, quality - Epworth 
Sleepiness Scale 

- Berlin 
Questionnaire 

(Sleep apnoea) 

no yes yes 

Vision impairment Question on any 
known conditions 

no yes yes 

Hearing impairment Question on any 
known conditions 

no no yes 

Socio-
demographics 

Age, gender, 
nationality, issue date 

of driver licence 

Closed question 
(provide response 

options) 

no no yes 

Level of education, 
socio-economic 

status, occupation 

Closed question 
(provide response 

options) 

no no yes 

Cultural identity Short Schwartz’s 
Value Survey 

(SSVS) 

no no yes 



D3.2 Toolbox of recommended data collection tools and monitoring methods and a conceptual definition of the 
Safety Tolerance Zone 

©i-DREAMS, 2020  Page 17 of 117 

Task complexity and demand 

Beside the current state of the driver and their overall characteristics, the quantity and 

complexity of the driving task will also determine when a warning or instruction is to be 

triggered to the driver. Main approaches found in the literature to collect real-time information 

on the current task demand comprise both physiological measures and driving performance 

measures. Self-reported task demand, which is also considered in many scientific studies, will 

not be covered at this point due to its impracticability for continuous measurement. However, 

self-reported task demand may be useful for repeated post-trip questionnaires to compare 

measured and reported demand as well as for validation of measures in the simulator study. 

Furthermore, context (environment) variables which are known to impact task demand include 

road layout, weather, traffic as well as time of day, especially with regards to accident risk 

prediction or after event analyses. All of those factors can be measured with equipment 

available to the consortium (e.g. with a dashboard cam). 

 

With regard to physiological and behavioral measures, the number and duration of eye 

fixations as well as cardiac measures are the most reliable indicators. While the latter is 

recorded by the CardioWheel, a supplementary vision-based recording device would improve 

reliability and validity.  

 

Constant variability in the lateral vehicle position in relation to the lane axis are important 

indicators of increased task demand. Both are reliably measurable with an in-vehicle OBD 

device. Compared to physiological and behavioral indicators, driving performance measures 

are, however, less informative regarding the underlying influencing factors. In this context, the 

concept of task difficulty homeostasis is noteworthy. It postulates that drivers dynamically 

maintain the perceived task difficulty within certain boundaries that conform to their 

corresponding preferences and self-assessed capabilities. Perceived task difficulty results thus 

the perceived capability combined with task demand and driver’s actual skills and expertise. 

The main mechanism for adjustment when task difficulty is outside of the preferred margins is 

reducing or increasing speed. 

Main conclusions from the preliminary works and the literature at a glance 

1. Most of the evidence is based around car driver studies. The transferability of some of the 

findings to trucks, buses, rails will partly be determined in an iterative process and by trial 

and error 

2. ‘Mental state’, ‘emotions’, ‘distraction’ etc. are theoretical constructs that require deciding 

on one of the plethora of definitions and theoretical concepts.  

3. Using complementary driver state monitoring devices provides for increased validity and 

reliability as well as a broader portrait of the actual real-time state  

4. Selecting the appropriate combination of devices with algorithms and methods is a trade-

off between achievable validity and efficiency 

5. A complementary wrist-worn (EDA) device would facilitate the valid measurement of 

emotional constructs, a camera-based system (facial feature or eye tracking) would 

facilitate measuring fatigue/sleepiness and attention 

6. Compromising the naturalistic driving character of the trials by using devices that have to 

be put on or activated before driving should be considered carefully and borne in mind 

when analysing the data 

7. The potential to consider the drivers’ traits and characteristics in the calculation of the STZ 

should be explored further 
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2.2 Overview of available technologies  

The purpose of this section is to give a detailed description of instantaneous measurements 

that will be used for real-time in-vehicle evaluation of STZ levels and abnormal driving... In the 

following sections, recommendation for each mode concerning the actual and practical STZ 

implementation are discussed. 

 

CardioID 

As stated in Section 2.1, several methods are available, yet no standards are recommender 

for inferring driver’s state and driving task demand. Furthermore, the ideal scenario, monitoring 

all the parameters referred to in the literature regarding driver’s state is only possible through 

the use of vast array of sensors which would lead to a prohibitively expensive solution. In the 

case of task demand, analogous rational is applicable. On the contrary, many driving/vehicle 

parameters are often objectively analysed and several tools are already available on the 

market. The setup to be selected by i-DREAMS project must therefore aim for the optimal 

achievable balance, usability, interference with naturalistic observations, budget and 

possible/eventual future exploitation plans. 

 

In what concerns driver’s state monitoring, the real-time measurement of physiological and 

behavioral indicators will be leveraged by devices that that have embedded physiological 

sensing capability for measuring vital signs and allow the extraction of several driver status 

monitoring (DSM) parameters. In particular, CardioWheel (CW) device allows the driver’s 

electrocardiogram (ECG) acquisition in a seamless way, using only the hands as point of 

contact. The ECG enables the extraction of driver ID, can produce a driver change alert, and 

also allows the verification if the driver is using both hands on the Wheel (extracting the 

%hands on Wheel), and computation of HRV parameters. It also provides a steering angle that 

is used in commercial solutions (e.g. Mercedes and other OEM) for evaluating driving behavior. 

The combination of these inputs provides an estimator for sleepiness.  

 

 
Figure 2: CardioWheel and extracted parameters 

 

In modes of transport where CW is unfeasible (i.e. rails as a result of not featuring a steering 

wheel), the alternative is to use a wearable capable of measuring the photoplethysmogram 

(PPG). Similarly to ECG, using PPG is also possible to extract the tachogram of the driver and 

infer HR and HRV parameters. Some wearables combine the acquisition of ECG with other 

measurements, such as electrodermal activity (EDA) and peripherical temperature (device on 

the right of the Figure 3). 
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Figure 3: Possible wearables (PulseOn – left; Emotibit – right) 

In addition, a wearable technology, called Feel, is the first wristband for emotional tracking 

(Feel, 2018). Specifically, Feel is a water-resistant leather bracelet that is designed to alert 

drivers when their body sends off biometric signals indicating that they are under stress or 

having extreme emotions. It also contains four integrated sensors, which include galvanic skin 

response, blood volume pulse, EDA, HR and HRV and skin temperature. The device is fairly 

less clunky and could greatly increase trials’ user acceptance. Moreover, this technology 

communicates with a smartphone app, which implies that could in theory communicate with i-

DREAMS gateway. Emotion related data could be provided as a closed output, whereas HR 

and HRV should be available as raw data. The integrated sensors on the wristband measure 

and track biosignals throughout the day, while the mobile application visualizes the results and 

provides personalized recommendations to improve emotional health. By leveraging on their 

knowledge and development, it may a good solution to speed up implementation of 

emotions/distraction –related indicators with a huge development and cost overheads. 

 

 
Figure 4: Feel wearable technology 

 

Regarding task demand, as described in Deliverable 2.1, there are several possible 

perspectives for measurement. The perspective of cognitive workload is, in an indirect way, 

measured by the use of DSM systems. The measure as an indirect result of exogenous factors 

can be integrated using the information provided by traffic web-services, road-layout map 

analysis. Alternatively, in a more direct way, the work load can also the measured by using 

systems that monitor the road and the distance to the neighbour vehicles, such as Mobileye 

collision avoidance system. 
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Figure 5: Mobileye collision avoidance system 

Mobileye system allows to extract headway monitoring information, detect vehicle ahead, 

trigger forward collision warning (FCW), and urban forward collision warning (UFCW), trigger 

involuntary lane departure warning (LDW), detect pedestrian ahead, and trigger pedestrian 

collision warning (PCW). Moreover, it detects traffic signs in real-time, triggering speeding 

alerts - speed limit indication (SLI) and forbidden overtaking signs. That together with data 

acquired from the vehicle allows for the creation of indexes related with the percentage of 

speeding, including contextual overspeed rather than being limited the maximum speed limit 

for vehicle type. The system also reads information from the vehicle CAN and produces a low 

visibility indicator. 

 

Moreover and to allow a better understanding of the actual road, a dashcam can be used to 

record the driving process. However, because the analysis of the entire driving process is a 

highly task and requires automatic tagging systems, a real-time perspective may falls outside 

the scope of this project (e.g. GDPR permission). 

 

 

Figure 6: Dashcams – (left - commercial solution; right - CardioID Dashcam & GPS) 

Nevertheless, these cameras without special processing are able to provide meaningful and 

relevant details, including a daylight indicator, roadway scene video evidence triggered by 

events. 

 

Additionally, vehicle parameters, whose data can be exchanged and acquired through the 

vehicle CAN, using OBD-II or alterative interfaces (e.g. FMS), are of special interest for eco-
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driving analysis. There are different possible solutions in the market, with differences regarding 

the local access to the data, and complexity of the extracted indicators. 

 

 

 
 

 

Figure 7: OBD-II dongles (Geotab – left; ELM327 – right) 

Trip identification (i.e. start/end trip time, total trip time) and average speed can be easily 

obtained directly from OBD. Moreover, most OBD devices monitor inertial information, allowing 

the determination of number of harsh accelerations, braking or aggressive driving events. It is 

worth mentioning that harsh accelerations or braking refer to a driver event when more force 

than normal is applied to the vehicle's accelerator or brake system and both can be important 

indicators of aggressive or unsafe driving behavior (Kevin Aries, 2019). 

 

The combination of all these inputs must be performed locally to enable the continuous 

estimation of the driver performance in a particular STZ phase, accordingly, determine the 

necessity of the real-time interventions. Several solutions are available on the market for edge 

Internet of Things (IoT) computing, but the complexity of interfaces that is required to combine 

all the sensors available needs extensive customization of already existing solutions, or the 

creation of a tailored made design which would be better for future exploitation plans. 

 

 
 

Figure 8: IoT platforms (Balena – left; CardioID GW – right) 

These IoT platforms are connected to the vehicle CAN, contextualizing the events and the trip 

with vehicle events, and may also be connected to the other CAN interfaces. Additionally, these 

platforms have a GPS chip and provide geostationary satellite localization services (GNSS), 

conveying the geolocation of all detected events. CardioID GW includes also an inertial unit 

that can be used for driving behavior analysis (i.e. for evaluating harsh acceleration 

/deceleration /cornering events, number of harsh accelerations and brakes, average trip 

speed). The sampling frequency of the parameters available from CardioID is presented in 

Table 2. 
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Table 2: Sampling frequency of values of the parameters provided by CardioID  
(“Event” denotes that a measurement is available, once a corresponding event is detected) 

Data Type Sampling Frequency 

CardioWheel – Raw ECG 1000Hz 

CardioWheel – Inter-beat Intervals About 1Hz 

CardioWheel – Hands-On-Detection Event 

CardioWheel – Raw Motion 200Hz 

CardioWheel – Driver Change Detection Event 

CardioWheel – Fatigue Detection Event 

Mobileye – Raw CAN messages Event 

Mobileye measurements (Headway) About 10Hz 

Mobileye – Warning System Event 

CardioID Gateway – GNSS 1Hz 

CardioID Gateway – Raw vehicle CAN messages Event 

CardioID Gateway – Dash Cam (triggered on specific events) Event 

PulseOn Wristband - PPG 25Hz 

Emotibit - PPG 100Hz 

ELM327 OBD Device Event 

 

OSeven 

OSeven developed a software development tool (O7SDK) for Android and iOS operating 

systems, incorporated within the OSeven application (O7APP), in order to collect the required 

data from the smartphone sensors and relay it to the OSeven platform for processing.  

 

The O7APP via the O7SDK detects driving without requiring any user action. During driving 

the O7APP records data via the O7SDK from the smartphone sensors (“Primary Data”). The 

recording starts whenever driving is detected and ends at any stop of driving with duration 

equal or more than five minutes. The Primary Data is provided to the O7SDK during the 

recording by the smartphone’s operating system manufacturers and developers (indicatively 

Apple: iOS, Google: Android) and is then collected and stored in the OSeven platform. The 

recording does not involve the recording of any activity or content of any other application 

installed in the smartphone or any personal data of the users. 

 

The OSeven platform is the infrastructure (indicatively but not limited to front end, back end, 

data base, machine learning algorithms, driving behavior models, statistical models, 

campaigns, gamification schemes, loyalty programs) as a complete information system that 

has been developed by OSeven. It comprises individual applications and numerous 

Application Programming Interfaces (APIs). The OSeven platform, whose advanced design 

enables it to collect, store, process and analyze high volumes of driving behavior data, has 

been developed by OSeven and it is hosted in recognized and acknowledged cloud service 

providers in the European Union (indicatively Amazon, Microsoft). 

 

The main Primary Data is the following: 

• Date/Time: the recording date/time/timestamp for Primary Data. 

• GPS Data: geographic longitude, geographic latitude and altitude of the device position, 

horizontal and vertical accuracy of the GPS recording, movement speed and vehicle 

direction and heading. 
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• Accelerometer data: Acceleration values on the three local axes (x, y, z) of the 

smartphone, including and excluding the acceleration of gravity. 

• Gyroscope data: Angular velocity values on the three local axes of the smartphone. 

• Values of the angles formed by the local axes of the smartphone to the North and to the 

horizontal plane (ground). 

• Activity Data (Motion and Fitness / Activity Recognition): Data provided by Apple and 

Google companies related with the activity of the user as it is recognized by the 

smartphone operating system (indicatively but not limited to, walking, stopping, driving). 

• Smartphone device data. It is provided by Google and Apple and includes indicatively but 

not limited to, the manufacturer’s brand, the device model, the name and version of the 

operating system and the type of smartphone sensors (e.g. accelerometer, gyroscope, 

compass, etc.).  

• Push Notification Token Data: A unique alphanumeric code produced by Apple and 

Google companies, which is sent to a smartphone. This code is associated with a single 

installation of the O7APP. In case of uninstalling and reinstalling of the O7APP by the 

user, a new code is generated indicating the day and time that it was generated.  

• The sign in/out to/from O7APP date and time. 

 

The frequency of the values collected by the sensors varies and in some cases is not in the 

control of the application, since it is decided by the operating system of the device. The 

minimum frequency for all data is 1Hz, i.e. OSeven collects one or more values for every 

sensor per second. 

 

Using the Primary Data OSeven platform calculates a variety of post-trip parameters related 

with driving behavior and many of these can easily be computed in real time. 

Α variety of different parameters can be calculated, such as the following: 

• Start trip time: The time the trip started (hh:mm:ss). 

• End trip time: The time the trip ended (hh:mm:ss). 

• Total trip distance: Total distance travelled (m). 

• Trip duration: Total trip time (sec). 

• Type of the road network: e.g. urban, rural, highway (given by GPS position and integration 

with map providers e.g. OpenStreetMaps or/and Google Maps). 

• Speed: average, max trip speed (km/h),  

• Speeding: average speed over speed limit (km/h), duration of speeding (sec), exceedance 

of speed limit (km/h), percentage of time over the speed limit (%) – calculated based on 

speed limit data from map providers e.g. Google, OSM, etc.) 

• Distraction (With over 98% accuracy): Distraction caused by mobile use (talking, texting, 

internet navigation). 

• Braking: Frequency (number of harsh brakes), intensity and aggressiveness of harsh 

brakes (low, medium, high). 

• Acceleration: Frequency (number of harsh accelerations), intensity and aggressiveness of 

harsh accelerations (low, medium, high). 

• Driving during increased risk time of the day: Distance travelled between 12 am and 5 am 

(m). 
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• Driver-passenger / mode recognition (with over 92% accuracy): determine the 

transportation mode and if the user is the driver or a passenger using a set of ML 

algorithms. 

• Scores (overall and per category: speeding, mobile use, acceleration, braking) 

 
Figure 9: O7APP trip details screen 

 

 
Figure 10: O7APP map visualization 

 
Figure 11: O7 portal visualization of driving behavior metrics 
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Table 3 provides a list of the available driver monitoring tools provided by tech-partners, while 

Tables 4, 5, 6 and 7 give an overview of the available measurements for cars, trucks, buses 

as well as trains and trams. Specifically, the template highlights the risk factors monitored 

associated with the STZ as well as those parameters that contribute to abnormal driving 

detection. In addition, the metrics and shortcomings of the devices used to acquire driving 

data, such as in-vehicle technologies, wearables, smartphone, steering wheel sensors or dash 

cameras, are also evaluated. Moreover, a description of outcome variables used to detect each 

factor (i.e. standard deviation of speed or aggregation level), as well as the type of these 

variables (i.e. numeric, categorical or continuous) is given. It is also investigated if the 

evaluation of each factor provides real-time or post-trip feedback and focus is given on task 

demand or coping capacity. Furthermore, it is discussed if the indicators are tested in simulator 

or onon-road conditions and a segmentation per transport mode to be monitored (i.e. 

passenger car, bus, truck and rail) is made. Relevant indicator or measurement thresholds, 

either numeric or categorical values, often used to detect increased risk factors and abnormal 

behavior. The detection reliability and accuracy levels and respective evaluation estimation 

procedures, as well as the percentage of valid detections and how validity is measured are 

also described in Table 3. With regards to the usability, reported evidence of ease of use or 

driver/operator interaction with monitoring and feedback setup as well as reported evidence 

on how the device and the measurements or indications become trusted and accepted by the 

driver/operator are addressed. Finally, practical implications, such as special aspects to be 

taken into account for the experiments as well as modifications are also considered. Person-

related characteristics, such as personality/attitude or other personal characteristics are 

included in the Table 3.  
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Table 3: List of available driver monitoring tools provided by tech-partners  

Partner Factors monitored Device Outcome variable(s) 
Real-time/Post-
trip evaluation 

Task 
Demand/ 
Coping 

Capacity 

Experiment 
setup 

Transpo
rt Mode 

Thresholds for 
detection 

Accuracy Validity Usability Acceptance 
Practical 

Implications 
Modifications 

Person-
related 

characteristi
cs 

OSeven harsh accelerations smartphone 

number of harsh 
accelerations per trip 
(frequency), level of 

intensity of harsh 
acceleration (low, 

medium, high), location 
on the map of the 

harsh accelerations  

post-trip 
task 

demand 
on-road Car 

The detection is 
based on data 

driven / data fusion / 
fusion / ML methods 

and therefore a 
specific limit cannot 

be provided. 

>95% (the 
estimation is 

based on OBD 
data and 
annotated 

experiments) 

95% Easy usability High acceptance 

No practical 
implications. 
Available to 
all devices 

and 
Operation 
System 

versions that 
are 

compatible 
with the 
O7APP. 

No No 

OSeven 
acceleration 

aggressiveness 
smartphone 

acceleration 
aggressiveness (low, 

medium, high) 

post-trip  
(real-time under 
development) 

task 
demand 

on-road Car 

The detection is 
based on data 

driven / data fusion / 
fusion / ML methods 

and therefore a 
specific limit cannot 

be provided. 

100% 100% Easy usability High acceptance 

No practical 
implications. 
Available to 
all devices 

and 
Operation 
System 

versions that 
are 

compatible 
with the 
O7APP. 

No No 

OSeven harsh brakes smartphone 

number of harsh 
brakes per trip 

(frequency), level of 
intensity of harsh 

brakes (low, medium, 
high), location on the 

map of the harsh 
brakes 

post-trip 
task 

demand 
on-road Car 

The detection is 
based on data 

driven / data fusion / 
fusion / ML methods 

and therefore a 
specific limit cannot 

be provided. 

>95% (the 
estimation is 

based on OBD 
data and 
annotated 

experiments) 

95% Easy usability High acceptance 

No practical 
implications. 
Available to 
all devices 

and 
Operation 
System 

versions that 
are 

compatible 
with the 
O7APP. 

No No 

OSeven 
braking 

aggressiveness 
smartphone 

braking 
aggressiveness (low, 

medium, high) 

post-trip 
(real-time under 
development) 

task 
demand 

on-road Car 

The detection is 
based on data 

driven / data fusion / 
fusion / ML methods 

and therefore a 
specific limit cannot 

be provided. 

100% 100% Easy usability High acceptance 

No practical 
implications. 
Available to 
all devices 

and 
Operation 
System 

versions that 
are 

compatible 
with the 
O7APP. 

No No 
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Partner Factors monitored Device Outcome variable(s) 
Real-time/Post-
trip evaluation 

Task 
Demand/ 
Coping 

Capacity 

Experiment 
setup 

Transpo
rt Mode 

Thresholds for 
detection 

Accuracy Validity Usability Acceptance 
Practical 

Implications 
Modifications 

Person-
related 

characteristi
cs 

OSeven speeding smartphone 

start time of speeding 
(hh:mm), speeding 

duration (sec), average 
speed over speed limit 
(km/h), percentage of 

driving time above 
speed limit (%),location 
of speeding section on 

the map 

post-trip 
task 

demand 
on-road Car 

The speed limit as it 
is provided by a 

technology provider 
(e.g. 

OpenStreetMaps, 
Google Maps) to 

OSeven 

>98% (the 
estimation is 

based on 
comparison of 
several map 

providers and 
annotated 

experiments) 

98% Easy usability High acceptance 

No practical 
implications. 
Available to 
all devices 

and 
Operation 
System 

versions that 
are 

compatible 
with the 

O7APP. For 
real time a 
source for 
the speed 
limits is 

required. 

Yes No 

OSeven 
mobile use (driver 

distraction) 
smartphone 

start time of mobile use 
(hh:mm), mobile use 

duration (sec), location 
of mobile use on the 

map 

post-trip 
(real-time under 
development) 

coping 
capacity 

on-road Car 

The detection is 
based on data 

driven / data fusion / 
fusion / ML methods 

and therefore a 
specific limit cannot 

be provided. 

>98% (the 
estimation is 

based on 
annotated 

experiments) 

98% Easy usability High acceptance 

No practical 
implications. 
Available to 
all devices 

and 
Operation 
System 

versions that 
are 

compatible 
with the 
O7APP. 

No No 

OSevenn
n 

risky hours driving 
(default value that 

can be customized: 
00:00-05:00 am) 

smartphone 
distance travelled 

during risky hours (m) 
post-trip 

coping 
capacity 

on-road Car 
The limits that are 
defined for risky 
hours driving. 

100% 100% Easy usability High acceptance 

No practical 
implications. 
Available to 
all devices 

and 
Operation 
System 

versions that 
are 

compatible 
with the 
O7APP. 

Yes No 

CardioID Headway Monitoring Mobileye Numeric (seconds) 
Real-time/ Post-

trip 

Task 
demand/ 
Coping 
capacity 

On-road/ 
Simulated 

Car/ Bus/ 
Truck 

TBD - depends on 
mode/ driving 

behavior 
    High Usability  

User feedback has 
shown that drivers 

take into account the 
notifications and 

improve their driving 
style 

Regional 
differences - 
driving style 
from country 

to country 

Yes (if the 
output device 

enables it) 
  



D3.2 Toolbox of recommended data collection tools and monitoring methods and a conceptual definition of the Safety Tolerance Zone 

©i-DREAMS, 2020  Page 28 of 117 

Partner Factors monitored Device Outcome variable(s) 
Real-time/Post-
trip evaluation 

Task 
Demand/ 
Coping 

Capacity 

Experiment 
setup 

Transpo
rt Mode 

Thresholds for 
detection 

Accuracy Validity Usability Acceptance 
Practical 

Implications 
Modifications 

Person-
related 

characteristi
cs 

CardioID Headway Level Mobileye Numeric (level) 
Real-time/ Post-

trip 

Task 
demand/ 
Coping 
capacity 

On-road/ 
Simulated 

Car/ Bus/ 
Truck 

TBD - depends on 
mode/ driving 

behavior 
    High Usability  

User feedback has 
shown that drivers 

take into account the 
notifications and 

improve their driving 
style 

Regional 
differences - 
driving style 
from country 

to country 

Yes (if the 
output device 

enables it) 
  

CardioID 
Speed Limit 
Indication 

Mobileye 
Numeric (km/h or 

miles/h) 
Real-time/ Post-

trip 

Task 
demand/ 
Coping 
capacity 

On-road/ 
Simulated 

Car/ Bus/ 
Truck 

TBD - depends on 
country rules/ driving 

style 
    High Usability  

User feedback has 
shown that drivers 

take into account the 
notifications and 

improve their driving 
style 

Regional 
differences - 
driving style 
from country 

to country 

Yes (if the 
output device 

enables it) 
  

CardioID Blinkers On Mobileye Categorical 
Real-time/ Post-

trip 

Task 
demand/ 
Coping 
capacity 

On-road/ 
Simulated 

Car/ Bus/ 
Truck 

TBD     High Usability  

User feedback has 
shown that drivers 

take into account the 
notifications and 

improve their driving 
style 

  
Yes (if the 

output device 
enables it) 

  

CardioID Pedestrian Ahead Mobileye Categorical 
Real-time/ Post-

trip 

Task 
demand/ 
Coping 
capacity 

On-road/ 
Simulated 

Car/ Bus/ 
Truck 

TBD     High Usability  

User feedback has 
shown that drivers 

take into account the 
notifications and 

improve their driving 
style 

  
Yes (if the 

output device 
enables it) 

  

CardioID 
Pedestrian 

CollisionCollision 
Warning 

Mobileye Categorical 
Real-time/ Post-

trip 

Task 
demand/ 
Coping 
capacity 

On-road/ 
Simulated 

Car/ Bus/ 
Truck 

TBD     High Usability  

User feedback has 
shown that drivers 

take into account the 
notifications and 

improve their driving 
style 

  
Yes (if the 

output device 
enables it) 

  

CardioID Vehicle Ahead Mobileye Categorical 
Real-time/ Post-

trip 

Task 
demand/ 
Coping 
capacity 

On-road/ 
Simulated 

Car/ Bus/ 
Truck 

TBD     High Usability  

User feedback has 
shown that drivers 

take into account the 
notifications and 

improve their driving 
style 

  
Yes (if the 

output device 
enables it) 

  

CardioID 
Forward 

CollisionCollision 
Warning 

Mobileye Categorical 
Real-time/ Post-

trip 

Task 
demand/ 
Coping 
capacity 

On-road/ 
Simulated 

Car/ Bus/ 
Truck 

TBD     High Usability  

User feedback has 
shown that drivers 

take into account the 
notifications and 

improve their driving 
style 

  
Yes (if the 

output device 
enables it) 

  

CardioID 
Urban Forward 

CollisionCollision 
Warning 

Mobileye Categorical 
Real-time/ Post-

trip 

Task 
demand/ 
Coping 
capacity 

On-road/ 
Simulated 

Car/ Bus/ 
Truck 

TBD     High Usability  

User feedback has 
shown that drivers 

take into account the 
notifications and 

improve their driving 
style 

  
Yes (if the 

output device 
enables it) 
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Partner Factors monitored Device Outcome variable(s) 
Real-time/Post-
trip evaluation 

Task 
Demand/ 
Coping 

Capacity 

Experiment 
setup 

Transpo
rt Mode 

Thresholds for 
detection 

Accuracy Validity Usability Acceptance 
Practical 

Implications 
Modifications 

Person-
related 

characteristi
cs 

CardioID 
Lane Departing 

Warning 
Mobileye Categorical 

Real-time/ Post-
trip 

Task 
demand/ 
Coping 
capacity 

On-road/ 
Simulated 

Car/ Bus/ 
Truck 

TBD - depends on 
driving style 

    High Usability  

User feedback has 
shown that drivers 

take into account the 
notifications and 

improve their driving 
style 

  
Yes (if the 

output device 
enables it) 

  

CardioID 
Weather Conditions 

(Wipers On) 
Mobileye Categorical 

Real-time/ Post-
trip 

Task 
demand/ 
Coping 
capacity 

On-road/ 
Simulated 

Car/ Bus/ 
Truck 

TBD     High Usability  

User feedback has 
shown that drivers 

take into account the 
notifications and 

improve their driving 
style 

  
Yes (if the 

output device 
enables it) 

  

CardioID 
Low Visibility 

Warning 
Mobileye Categorical 

Real-time/ Post-
trip 

Task 
demand/ 
Coping 
capacity 

On-road/ 
Simulated 

Car/ Bus/ 
Truck 

TBD     High Usability  

User feedback has 
shown that drivers 

take into account the 
notifications and 

improve their driving 
style 

  
Yes (if the 

output device 
enables it) 

  

CardioID 
Trip Duration (Start-

End Time) 
Mobileye or GW Numeric (time) Post-trip   

On-road/ 
Simulated 

Car/ Bus/ 
Truck 

      High Usability  

User feedback has 
shown that drivers 

take into account the 
notifications and 

improve their driving 
style 

  
Yes (if the 

output device 
enables it) 

  

CardioID Vehicle Speed Mobileye Numeric 
Real-time/ Post-

trip 

Task 
demand/ 
Coping 
capacity 

On-road/ 
Simulated 

Car/ Bus/ 
Truck 

TBD - depends on 
country rules/ driving 

style 
    High Usability  

User feedback has 
shown that drivers 

take into account the 
notifications and 

improve their driving 
style 

Regional 
differences - 
driving style 
from country 

to country 

Yes (if the 
output device 

enables it) 
  

CardioID % Overspeed Mobileye+GW Numeric (0-100%) Post-trip 

Task 
demand/ 
Coping 
capacity 

On-road/ 
Simulated 

Car/ Bus/ 
Truck 

TBD - depends on 
country rules/ driving 

style 
    High Usability  

User feedback has 
shown that drivers 

take into account the 
notifications and 

improve their driving 
style 

Regional 
differences - 
driving style 
from country 

to country 

Yes (if the 
output device 

enables it) 
  

CardioID Position (GPS) GW Numeric (lat/long/alt) 
Real-time/ Post-

trip 

Task 
demand/ 
Coping 
capacity 

On-road 
Car/ Bus/ 

Truck 
      High Usability          

CardioID Acceleration Data GW/O7 Numeric (m/sec2) 
Real-time/ Post-

trip 

Task 
demand/ 
Coping 
capacity 

On-road/ 
Simulated 

Car/ Bus/ 
Truck 

TBD - depends on 
driving style 

    High Usability  

User feedback has 
shown that drivers 

take into account the 
notifications and 

improve their driving 
style 
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Partner Factors monitored Device Outcome variable(s) 
Real-time/Post-
trip evaluation 

Task 
Demand/ 
Coping 

Capacity 

Experiment 
setup 

Transpo
rt Mode 

Thresholds for 
detection 

Accuracy Validity Usability Acceptance 
Practical 

Implications 
Modifications 

Person-
related 

characteristi
cs 

CardioID RPM + Speed GW+OBD Numeric (r/min) 
Real-time/ Post-

trip 

Task 
demand/ 
Coping 
capacity 

On-road/ 
Simulated 

Car/ Bus/ 
Truck 

TBD     High Usability  

User feedback has 
shown that drivers 

take into account the 
notifications and 

improve their driving 
style 

      

CardioID Daylight Indicator GW+CAM Categorical 
Real-time/ Post-

trip 

Task 
demand/ 
Coping 
capacity 

On-road/ 
Simulated 

Car/ Bus/ 
Truck 

      High Usability  

User feedback has 
shown that drivers 

take into account the 
notifications and 

improve their driving 
style 

      

CardioID 
Roadway Scene 
Video Bases on 

Event 
GW+CAM Video Post-trip 

Task 
demand/ 
Coping 
capacity 

On-road/ 
Simulated 

Car/ Bus/ 
Truck 

      High Usability          

CardioID Driver Change CardioWheel Categorical 
Real-time/ Post-

trip 

Task 
demand/ 
Coping 
capacity 

On-road/ 
Simulated 

Car/ Bus/ 
Truck 

      
Requires User 
Cooperation 

      Yes 

CardioID 
Drowsiness/Sleepin

ess 
CardioWheel / 

Wristband 
Categorical (KSS) 

Real-time/ Post-
trip 

Task 
demand/ 
Coping 
capacity 

On-road/ 
Simulated 

Car/ Bus/ 
Truck 

TBD     
Requires User 
Cooperation 

        

CardioID 
Driver Fitness - 

Interbeat Interval 
(IBI) 

CardioWheel / 
Wristband 

Numeric (ms) 
Real-time/ Post-

trip 

Task 
demand/ 
Coping 
capacity 

On-road/ 
Simulated 

Car/ Bus/ 
Truck 

      
Requires User 
Cooperation 

        

CardioID 
Lead On (Hands-on-

Wheel) 
CardioWheel Categorical 

Real-time/ Post-
trip 

Task 
demand/ 
Coping 
capacity 

On-road/ 
Simulated 

Car/ Bus/ 
Truck 

      
Requires User 
Cooperation 

        

CardioID GSR/EDA Events Wristband* Categorical 
Real-time/ Post-

trip 

Task 
demand/ 
Coping 
capacity 

Simulated Simulator       
Requires User 
Cooperation 

        

CardioID Harsh Acceleration GW / O7 Numeric 
Real-time/ Post-

trip 

Task 
demand/ 
Coping 
capacity 

On-road/ 
Simulated 

Car/ Bus/ 
Truck 

TBD - depends on 
driving style 

    High Usability  

User feedback has 
shown that drivers 

take into account the 
notifications and 

improve their driving 
style 
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Partner Factors monitored Device Outcome variable(s) 
Real-time/Post-
trip evaluation 

Task 
Demand/ 
Coping 

Capacity 

Experiment 
setup 

Transpo
rt Mode 

Thresholds for 
detection 

Accuracy Validity Usability Acceptance 
Practical 

Implications 
Modifications 

Person-
related 

characteristi
cs 

CardioID Harsh Braking GW / O7 Numeric 
Real-time/ Post-

trip 

Task 
demand/ 
Coping 
capacity 

On-road/ 
Simulated 

Car/ Bus/ 
Truck 

TBD - depends on 
driving style 

    High Usability  

User feedback has 
shown that drivers 

take into account the 
notifications and 

improve their driving 
style 

      

CardioID Harsh Cornering GW  Numeric 
Real-time/ Post-

trip 

Task 
demand/ 
Coping 
capacity 

On-road/ 
Simulated 

Car/ Bus/ 
Truck 

TBD - depends on 
driving style 

    High Usability  

User feedback has 
shown that drivers 

take into account the 
notifications and 

improve their driving 
style 

      

CardioID Reverse Direction GW / O7 Numeric 
Real-time/ Post-

trip 

Task 
demand/ 
Coping 
capacity 

On-road/ 
Simulated 

Car/ Bus/ 
Truck 

TBD - depends on 
driving style 

    High Usability  

User feedback has 
shown that drivers 

take into account the 
notifications and 

improve their driving 
style 
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Table 4: Overview of available measurements in cars  

i-DREAMS use case Car Unit 
CardioID 
gateway 

Wristband Mobileye (ELM327) 
cloud traffic 

service 
Smartphone app 

Available sensor functionality   
GPS, dashcam, 
(accelerometer) 

PPG sensor 
intelligent 
camera 

OBD-II   

accelerometer, 
GPS, 

magnetometer, 
gyroscope 

computing power available for i-DREAMS calculations   Yes no no no   yes (limited) 

data storage   
dedicated SD-

card 
no no no   

non-dedicated 
phone memory 

data transmission   
CAN, WIFI, 

Ethernet, BLE 
BLE CAN Bluetooth   

WIFI, BLE, 
3G/4G 

powered by   vehicle battery vehicle vehicle   battery 

Environment               

time headway (TH) sec     X       

headway level integer     X       

speed limit indication (SLI) km/h     X       

forbidden overtaking sign yes/no     X       

wipers active (on CAN) yes/no     X       

turn indicator activation/deactivation (on CAN) yes/no     X       

pedestrian ahead detected yes/no     X       

pedestrian collision warning (PCW) yes/no     X       

vehicle ahead detected yes/no     X       

forward collision warning (FCW) yes/no     X       

urban forward collision warning (UFCW) yes/no     X       

left lane departure warning yes/no     X       

right lane departure warning yes/no     X       

low visibility indicator yes/no     X       

congestion indicator yes/no         X   

daylight indicator yes/no (X)           
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i-DREAMS use case Car Unit 
CardioID 
gateway 

Wristband Mobileye (ELM327) 
cloud traffic 

service 
Smartphone app 

driving during risky hours yes/no X     X    X 

roadway scene video mp4 X          

start trip time hh:mm:ss X     X   X 

end trip time hh:mm:ss X     X   X 

time since trip start hh:mm:ss X     X   X 

total trip time hh:mm:ss X     X   X 

Vehicle               

vehicle speed (CAN) m/sec     X X     

ground speed (GPS) m/sec X        X 

position (GPS) x,y X        X 

accelerometer data m/sec2 (X)        X 

fuel usage l/100km       X     

RPM r/min       X     

diagnostic trouble codes raw    X   

Driver               

PPG signal raw   X         

driver identification driver ID           X 

attention level / sleepiness level (0-100)   X         

mobile phone use 
yes/no + 
percentage of 
driving time 

          X 

interbeat interval milliseconds   X         

Accel/Brake aggressiveness indicator Low/med/high           X 

harsh acceleration / brake yes/no (X)        X 

%overspeed 
percentage of 
driving time 

(X)     X   X 

number of harsh accelerations count (X)        X 

number of harsh brakes count (X)        X 

average speed over speed limit km/h (X)     X   X 

average trip speed km/h (X)     X   X 
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i-DREAMS use case Car Unit 
CardioID 
gateway 

Wristband Mobileye (ELM327) 
cloud traffic 

service 
Smartphone app 

                

available in real-time               

available in real-time but in vehicle computation needed               

not available for real-time interventions, available only after 
post-trip processing 

              

(X) = can be implemented if needed               

 

Table 5: Overview of available measurements in trucks and buses 

i-DREAMS use case Truck & Bus Unit 
CardioID 
gateway CardioWheel Mobileye ELM327 cloud traffic service (Smartphone app) 

Available sensor functionality  

GPS, dashcam, 
(accelerometer) ECG, accelerometer 

intelligent 
camera OBD-II  

accelerometer, GPS, 
magnetometer, 

gyroscope 

computing power available for i-
DREAMS calculations  YesYes no no no  yes (limited) 

data storage  

dedicated SD-
card no no no  

non-dedicated phone 
memory 

data transmission  

CAN, WIFI, 
Ethernet, BLE BLE CAN Bluetooth  WIFI, BLE, 3G/4G 

powered by  vehicle vehicle/battery vehicle vehicle  battery 

        

Environment        

time headway (TH) sec   X    

headway level integer   X    

speed limit indication (SLI) km/h   X    

forbidden overtaking sign yes/no   X    

wipers active (CAN) yes/no   X    
turn indicator activation/deactivation 
(CAN) yes/no   X    

pedestrian ahead detected yes/no   X    
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i-DREAMS use case Truck & Bus Unit 
CardioID 
gateway CardioWheel Mobileye ELM327 cloud traffic service (Smartphone app) 

pedestrian collision warning (PCW) yes/no   X    

vehicle ahead detected yes/no   X    

forward collision warning (FCW) yes/no   X    
urban forward collision warning 
(UFCW) yes/no   X    

left lane departure warning yes/no   X    

right lane departure warning yes/no   X    

low visibility indicator yes/no   X    

congestion indicator yes/no     X  

daylight indicator yes/no (X)     X 

driving during risky hours yes/no X   X  X 

roadway scene video mp4 X      

start trip time hh:mm:ss X   X  X 

end trip time hh:mm:ss X   X  X 

time since trip start hh:mm:ss X   X   

total trip time hh:mm:ss X   X  X 

Vehicle        

vehicle speed (CAN) m/sec   X X   

ground speed (GPS) m/sec X     X 

position (GPS) x,y X     X 

Accelerometer data m/sec2 (X)     X 

Fuel usage l/100km    X   

RPM r/min    X   

Diagnostic trouble codes raw    X   

Driver        

ECG signal 16bit unsigned integer  X     

Driver identification Driver ID  X    X 

Driver change event  X     

Hands on wheel yes/no  X     
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i-DREAMS use case Truck & Bus Unit 
CardioID 
gateway CardioWheel Mobileye ELM327 cloud traffic service (Smartphone app) 

%hands on wheel 
percentage of driving 
time  X     

Attention level / sleepiness level (0-100)  X     

Mobile phone use 
percentage of driving 
time      X 

Steering wheel accelerometer degrees  X     

Interbeat interval milliseconds  X     
aggressivenessgressivenessgressi
veness indicator Low/med/high      X 

harsh acceleration / deceleration yes/no (X)     X 

%overspeed 
percentage of driving 
time (X)   X  X 

number of harsh accelerations count (X)     X 

number of harsh brakes count (X)     X 

average speed over speed limit km/h (X)   X  X 

average trip speed km/h (X)   X  X 

        

Available in real-time       

Available in real-time but in vehicle computation needed       

Not available for real-time interventions, available only after 
post-trip processing       

(X) = can be implemented if needed       
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Table 6: Overview of available measurements in trams 

i-DREAMS use case Trams Unit 
CardioID 
gateway 

Wristband 
Emotibit 

Wristband 
PulseOn 

Mobileye (Geotab) 
cloud 
traffic 

service 

(Smartphone 
app) 

On tram 
recorder 

Guardian 
System 

Available sensor functionality   
GPS, 

dashcamera, 
(accelerometer) 

GSR/EDA, 
Thermistor, 

PPG, 
humidity, 

temperature, 
accelerometer, 

gyroscope, 
magnetometer 

PPG 
sensor 

intelligent 
camera 

OBD-II, GPS, 
Accelerometer 

  

accelerometer, 
GPS, 

magnetometer, 
gyroscope 

  

computing power available for i-DREAMS 
calculations 

  yes no no no no   yes (limited) 
  

data storage   
dedicated SD-

card 
dedicated SD-

card 
no no no   

non-dedicated 
phone memory 

  

data transmission   
3G/4G, CAN, 

WIFI, BLE 
WIFI, BLE,  BLE CAN 3G/4G   

WIFI, BLE, 
3G/4G 

  

powered by   vehicle battery battery vehicle vehicle   battery   

Environment            

time headway sec    X      

headway level integer    X      

speed limit indication (SLI) km/h    X      

forbidden overtaking sign yes/no          

wipers active  yes/no        X  

turn indicator activation/deactivation (on tram 
recorder) 

yes/no          

pedestrian ahead detected yes/no    X      

pedestrian side of vehicle detection yes/no    X1      

pedestrian collision warning (PCW) yes/no    X      

vehicle ahead detected yes/no    X      

forward collision warning (FCW) yes/no    X      

urban forward collision warning (UFCW) yes/no    X      

left lane departure warning yes/no    X      



D3.2 Toolbox of recommended data collection tools and monitoring methods and a conceptual definition of the Safety Tolerance Zone 

©i-DREAMS, 2020  Page 38 of 117 

i-DREAMS use case Trams Unit 
CardioID 
gateway 

Wristband 
Emotibit 

Wristband 
PulseOn 

Mobileye (Geotab) 
cloud 
traffic 

service 

(Smartphone 
app) 

On tram 
recorder 

Guardian 
System 

right lane departure warning yes/no    X      

blind spot detection     X3      

low visibility indicator yes/no    X      

congestion indicator yes/no      X    

daylight indicator yes/no (X)         

driving during risky hours yes/no X      X X  

roadway scene video mp4 X         

start trip time hh:mm:ss X      X X  

end trip time hh:mm:ss X      X X  

time since trip start hh:mm:ss X      X X  

total trip time hh:mm:ss X      X X  

Vehicle            

vehicle speed (on tram recorder) m/sec    X    X  

ground speed (GPS) m/sec X    X  X   

position (GPS) x,y X    X  X   

Accelerometer data m/sec2 (X)    X  X   

Electricity usage l/100km          

Physical prevention of over-speeding (PPOS) 
device activation (on tram recorder) 

         X  

Driver            

ECG signal            

PPG signal    X X       

GSR/EDA signal    X        

body temperature    X        

Driver identification driver ID       X   

Driver change event          

Attention level / sleepiness score  level (0-100)  X X       

Attention level / sleepiness alarm  yes/ no         X 

                                                           
3 Contingent on tram based Mobileye Shield+ system 
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i-DREAMS use case Trams Unit 
CardioID 
gateway 

Wristband 
Emotibit 

Wristband 
PulseOn 

Mobileye (Geotab) 
cloud 
traffic 

service 

(Smartphone 
app) 

On tram 
recorder 

Guardian 
System 

Mobile phone use 
percentage of 
driving time 

         

Interbeat interval milliseconds  X X       

safetybelt attached yes/no          

aggressiveness indicator ?       X 
  

harsh acceleration / brake yes/no (X)      X X  

%overspeed 
percentage of 
driving time 

(X)      X 
  

number of harsh accelerations count (X)      X X  

number of harsh brakes count (X)      X X  

average speed over speed limit km/h (X)      X   

average trip speed km/h (X)      X X  

             

Available in real-time                   

Available in real-time but in vehicle computation 
needed 

                
  

Not available for real-time interventions, available 
only after post-trip processing 

                
  

(X) = can be implemented if needed                   
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Table 7: Overview of available measurements in trains 

i-DREAMS use case Trains Unit 
CardioID 
gateway 

Wristband 
Emotibit 

Wristband 
PulseOn 

Mobileye (Geotab) 
cloud 
traffic 

service 

(Smartphone 
app) 

 
On train 
recorder 

Available sensor functionality   
GPS, 

dashcamera, 
(accelerometer) 

GSR/EDA, 
Thermistor, 

PPG, 
humidity, 

temperature, 
accelerometer, 

gyroscope, 
magnetometer 

PPG 
sensor 

intelligent 
camera 

OBD-II, GPS, 
Accelerometer 

  

accelerometer, 
GPS, 

magnetometer, 
gyroscope 

 

computing power available for idreams 
calculations 

  yes no no no no   yes (limited) 
 

data storage   
dedicated SD-

card 
dedicated SD-

card 
no no no   

non-dedicated 
phone memory 

 

data transmission   
On train 

recorder, WIFI, 
BLE 

WIFI, BLE,  BLE 
On train 
recorder 

3G/4G   
WIFI, BLE, 

3G/4G 

 

powered by   vehicle battery battery vehicle vehicle   battery  

Environment           

time headway sec         

headway level integer         

speed limit indication (SLI) km/h    X     

forbidden overtaking sign yes/no         

wipers active (On train recorder) yes/no        X 

turn indicator activation/deactivation  yes/no         

pedestrian ahead detected yes/no         

pedestrian collision warning (PCW) yes/no         

vehicle ahead detected yes/no         

forward collision warning (FCW) yes/no         

urban forward collision warning (UFCW) yes/no         

left lane departure warning yes/no         
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i-DREAMS use case Trains Unit 
CardioID 
gateway 

Wristband 
Emotibit 

Wristband 
PulseOn 

Mobileye (Geotab) 
cloud 
traffic 

service 

(Smartphone 
app) 

 
On train 
recorder 

right lane departure warning yes/no         

low visibility indicator yes/no    X     

congestion indicator yes/no         

daylight indicator yes/no (X)        

driving during risky hours yes/no ?      X X 

roadway scene video mp4 X       X 

start trip time hh:mm:ss X      X  

end trip time hh:mm:ss X      X X 

time since trip start hh:mm:ss X      X X 

total trip time hh:mm:ss X      X X 

Vehicle           

vehicle speed  m/sec    X    X 

ground speed (GPS) m/sec X    X  X  

position (GPS) x,y X    X  X  

Accelerometer data m/sec2 (X)    X  X  

Electricity/ Fuel usage l/100km     X   X 

RPM r/min        X 

Automatic warning system (AWS)         X 

Automatic train protection (ATP)         X 

Train protection and warning system (TPWS)         X 

Driver           

ECG signal           

PPG signal    X X      

GSR/EDA signal    X       

body temperature    X       

Driver identification driver ID       X  

Driver change event         

Attention level / sleepiness level (0-100)  X X      
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i-DREAMS use case Trains Unit 
CardioID 
gateway 

Wristband 
Emotibit 

Wristband 
PulseOn 

Mobileye (Geotab) 
cloud 
traffic 

service 

(Smartphone 
app) 

 
On train 
recorder 

Mobile phone use 
percentage of 
driving time 

        

Interbeat interval milliseconds  X X      

safetybelt attached yes/no         

aggressiveness indicator ?       X 
 

harsh acceleration / brake yes/no (X)      X  

%overspeed 
percentage of 
driving time 

(X)      X 
 

number of harsh accelerations count (X)      X X 

number of harsh brakes count (X)      X X 

average speed over speed limit km/h (X)      X  

average trip speed km/h (X)      X  

Available in real-time           

Available in real-time but in vehicle 
computation needed 

          

Not available for real-time interventions, 
available only after post-trip processing 

          

(X) = can be implemented if needed           
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2.3 Recommendations on driver measurements per mode  

In this section emphasis is given on driver state measurements and technologies. It is also 

investigated which of the available measurements should be used for practical implementation 

for the STZ and which of them can detect abnormal driving. Measurements should be 

considered for each factor with regards to the model and for experimental output. Also, a 

distinction per transport mode is made taking into account functionality, availability and cost. 

Finally, It is noteworthy that considered factors include accuracy, validity, suitability for the 

respective transport mode, usability as well as users' acceptability, as discussed below. 

 The i-DREAMS driver and vehicle monitoring equipment should require as less attentional 

or physical effort as possible in order to avoid drivers to be distracted or to abandon the 

use of the system. Hence, measurement technology should preferably be powered by the 

vehicle and switch on and off automatically at the beginning and end of trips (i.e. no 

manual intervention by the driver needed) and should monitor the driver ‘silently in the 

background’ (i.e. not actively interfering with the driver). Also, the exchange of data, either 

wired or wireless, between different sensors and control units should take place without 

manual intervention of the driver. 

 The i-DREAMS driver and vehicle monitoring technology must support the identification 

and prediction in real-time of risky events (e.g. dangerous headway) and must provide 

relevant data to trigger real-time in-vehicle safety related interventions (warnings), as well 

as feed post-trip interventions. Hence, the driver and vehicle monitoring technology must 

enable interfacing with other data collection and control units in the vehicle for the 

exchange, integration and processing of other relevant sensor data (i.e. from the road 

environment). 

 The i-DREAMS driver and vehicle monitoring equipment should not interfere with normal 

operations while driving to avoid distraction, physical and visual obstruction which could 

lead to safety-related or ergonomic adverse outcomes. 

 The i-DREAMS driver and vehicle monitoring equipment should enable faultless 

identification of the driver, especially when multiple drivers may operate the same vehicle. 

Otherwise a potential risk exists of assigning data incorrectly, to a different/wrong driver. 

 The i-DREAMS driver and vehicle monitoring equipment should achieve high accuracy 

and low latency levels in terms of the real-time identification of relevant driver behavioral 

constructs, such as fatigue and inattention/distraction. Otherwise, the detection of such 

events may not allow for timely in-vehicle interventions. 

 Transport companies and public service operators work in a highly competitive market with 

relatively low profit margins. As a result, having in mind potential future exploitation 

strategies, i-DREAMS technology must take this commercial context into account for its 

technology design. For example, the large scale adoption of after-market eye tracking 

technology, although potentially very effective to measure driver distraction and fatigue, is 

not acceptable in a practical (commercial) setting as long as these technologies require 

significant investments (in the order of several thousands of euros per vehicle). Expensive 

investments in driver monitoring technologies are therefore unacceptable. The selection of 

driver monitoring technologies must therefore find a good balance between effectiveness 

and cost. 

 

2.3.1 Cars 

With regards to the car mode, it is important to examine the available driver state monitoring 

technologies for the measurement of vehicle and operator capacity in the i-DREAMS field trials. 

Distinctive features from each of the measurement instruments are indicated in boldface. 
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 Wristband: is a technology alternative to CardioWheel which identifies driver attention 

level, fatigue or sleepiness through PPG and ECG for the cases where vehicles cannot 

be equipped with CardioWheel technology. Other driver state indicators such as GSR/EDA 

signals, body temperature and interbeat interval can be measured from wristband through 

thermistor, humidity, accelerometer, gyroscope or magnetometer.  

 OBD-II device: which acquires real-time vehicle telematics data such as vehicle speed, 

frequency and severity of over speeding, fuel usage and RPM. Depending on the model 

and type of vehicle, additional CAN data may be available. In case fuel usage and RPM 

are not of primary concern for safety purposes, the OBD-II device might be omitted from 

the car use case because all other relevant variables are already captured by the OSeven 

smartphone app or the CardioID Gateway (such as speed, acceleration/deceleration, etc). 

 CardioID GW: uses ground speed and position, dashcam and accelerometer data for 

determining the position of the driver within the STZ and trigger appropriate in-vehicle 

interventions in real-time. Vehicle trajectory and speed (GPS), frequency and severity of 

over speeding, accelerometer data (e.g. harsh acceleration, deceleration and cornering) 

and trip start and duration (i.e. task related fatigue) are some parameters estimated in 

real-time conditions. In parallel, CardioID GW also provides data for post-processing such 

as percentage of driving time, number of harsh accelerations or brakes, average speed 

over speed limit as well as average trip speed. 

 OSeven smartphone app: uses accelerometer, GPS, magnetometer and gyroscope data 

in order to identify whether the driver's mobile phone is in use or not, determine vehicle 

trajectory and thus vehicle or ground speed (GPS speed), frequency and severity of over 

speeding, accelerometer data (harsh acceleration, brake), position, distance per road 

type (i.e. highway, rural, urban), trip start and duration (i.e. task related fatigue). It is worth 

mentioning that there are some parameters that are not available in real-time but they are 

available for post-trip processing, using WiFi or 3G/4G. These parameters include the 

percentage of driving time, number of harsh accelerations or brakes and average trip 

speed. Finally, the percentage of speeding and average speed over speed limit will be 

provided while the speed limit is available either by the traffic signs or the map provider via 

internet. Consequently, as these parameters are only available for post-trip interventions, 

OSeven could work on a solution for real-time processing but accuracy and effectiveness 

of just-in-time procedures may not be ensured at this stage. 

 

To sum up, vehicle telematics data from OBD-II and smartphone (i.e. actual speed, harsh 

acceleration, deceleration or cornering, RPM) and operator state data (i.e. ECG, fatigue 

indicator) from wristband are available within the i-DREAMS project. 

 

2.3.2 Trucks and buses 

In this section, an assessment will be made with respect to the selection of technologies for 

the measurement of vehicle and operator capacity for heavy vehicles, including trucks and 

buses, in the i-DREAMS field trials. It is worth mentioning that bus and trucks will be treated 

jointly in this section as they share several common elements for the purpose of the field trials 

as well as the experimental setup which motivates the same choice of monitoring technologies 

in both vehicle types: 

 Trucks and buses share similar characteristics in terms of size and weight. Both are large 

and heavy vehicles and therefore also share common challenges toward road safety. 

 From the online stakeholder survey (for detailed results, Deliverables 3.1 and D9.1 are 

referred) and from accident statistics, it became clear that buses and trucks share similar 

severe collision types, including rear-end collisions and head-on collisions. Close following 
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another vehicle, sudden braking, stress (time pressure), inattention and fatigue are 

important contributing risk factors. 

 The same vehicle (truck or bus) is often operated by multiple professional drivers (e.g. 

drivers working in different time shifts), a scenario less commonly observed for private 

vehicles. 

 Trucks and buses are operated by transport companies or public service organizations 

having both a professional interest in maintaining high road safety standards and 

minimizing vehicle downtimes. 

 The installation environment in terms of available space, CAN interface, etc. bears 

significant similarities between trucks and buses. 

 Trucks and buses are vehicles with a high investment cost, they have on average a much 

higher yearly and longer useful life-cycles vehicle mileage and higher end-of-life mileage 

in comparison to most private cars. This allows for a higher cost of adding after-market 

safety technologies in comparison to private cars because given the investment can be 

depreciated over a larger time period and higher mileage. 

 

From the list of available monitoring technologies provided in section 2.2, the following are 

proposed for implementation in the i-DREAMS field trials to measure vehicle and operator 

state (i.e. operator capacity) in the context of trucks and buses. Distinctive features from each 

of the measurement instruments are indicated in boldface. 

 CardioWheel: measures operator state data, such as ECG while driving and derives a 

drowsiness and fatigue indicator. Current commercial systems are already starting to 

leverage the analysis of behaviors consequence of fatigue and drowsiness to infer about 

driver state, however such approach bears the risk of delayed detection and thus may fail 

to warn drivers opportunely. Hence, although different drowsiness warning systems exist 

already commercially, the technology proposed within i-Dreams in real-time, being 

detected even before drowsiness and fatigue start to impair the driver coping capacity. 

This device also measures the steering wheel angle, which is also used as indicator of 

driver’s state. Drowsiness is known as an important contributor to collisions, hence it 

should be included in the i-DREAMS solution. Different levels of drowsiness may 

potentially be linked to the STZ concept, i.e. not only waiting to warn the driver when he 

should pull aside and stop driving but informing drivers about potential 

coping/compensation strategies. However, the main disadvantage of this technology is 

that is not suitable to be fitted to a passenger car or rail for the trials due to the need 

to remove upholstery or having the device visible. Nevertheless, if the technology is proven 

sound, in the future it could easily be integrated by OEMs during the manufacturing 

process. 

 Wristband: for identification of driver fatigue through PPG as an alternative technology 

in case the vehicle cannot be equipped with CardioWheel technology.  

 OBD-II device: for the real-time measurement of vehicle speed, frequency and severity of 

over speeding, fuel usage and RPM. Depending on the model and type of vehicle, 

additional CAN data may be available. 

 OSeven smartphone app: for distraction (i.e. mobile phone use while driving), vehicle 

trajectory, the measurement of vehicle speed (GPS speed), frequency and severity of over 

speeding, accelerometer data (harsh acceleration and brake), trip start and duration (i.e. 

task related fatigue) and the calculation of a driving aggressiveness indicator. It must 

be noted that currently the OSeven app has not been built for use in heavy vehicles (truck, 

bus). It is therefore currently still under investigation if a smartphone app for real-

time measurements will be used or not. 



D3.2 Toolbox of recommended data collection tools and monitoring methods and a conceptual definition of the 
Safety Tolerance Zone 

©i-DREAMS, 2020  Page 46 of 117 

 CardioID GW: for the fusion of data from the different measurement instruments above 

(based on BLE), as well as for the measurement of vehicle trajectory and speed (GPS), 

frequency and severity of over speeding, accelerometer data (harsh acceleration, 

deceleration and cornering), trip start and duration (i.e. task related fatigue). The CardioID 

GW will also serve as a central edge computing unit to calculate in real-time the position 

of the driver within the STZ, to trigger appropriate in-vehicle interventions in real-time, and 

to upload data for post-processing and post-trip interventions to the i-DREAMS cloud 

platform (using WiFi, 3G/4G). 

 

The estimation of driver fatigue, hands on the wheel, mobile phone use, vehicle speed, 

aggressiveness indicator and trip duration will feed into the STZ as important indicators of 

driver coping capacity.  

 

2.3.3 Trains and trams 

Trains and trams operate differently from the other modes included in the project (car, bus, 

truck), and trains even more so compared to trams. Both run on tracks rather than on the road, 

although trams do share the road with other road users along parts of their routes. Trains have 

signalling systems in place which help to control the environment in which they operate in, and 

neither trams nor trains have similar dashboards or vehicle controls compared to cars, trucks 

or buses. There has also been limited research into driver state monitoring in trains and trams 

compared to the other modes. Therefore, these factors need to be taken into consideration 

when applying the findings and recommendations of driver state and environment monitoring 

to trains and trams.  

 

Certain safety systems are already in place in trains. While these do not monitor the state of 

the driver, if drivers fail to respond to a warning signal, do not reduce speed, or pass a stop 

signal, which could be due to inattention, distraction, or fatigue and sleepiness, the system 

automatically applies breaks. In the UK several transport companies have additionally installed 

driver monitoring systems into their fleets, including in certain trams, as for example the 

Guardian4 system by Seeing Machines. Aimed at detecting distraction and fatigue events, 

Guardian uses face and gaze tracking to measure the drivers head position and eye closure, 

triggering alarms if certain safety parameters are exceeded. The system also includes a 

forward-facing camera to provide footage of track or path conditions. In comparison to the 

Mobileye system, Guardian provides information and monitoring of driver state and just 

external footage, whereas Mobileye uses environmental and contextual information to aid in 

collision avoidance and improve driver behavior. Currently, no such applications have been 

used in trains.  

 

In terms of applying measures to monitor driver state in trains and trams, it appears that the 

most applicable and useful measures will be those that comprise of wearable technologies or 

measures obtained from a driver facing camera. It was concluded that attention monitoring 

systems would be easily transferable, with distraction/attention typically being measured by 

head/gaze/eye trackers, dashboard cameras, smartphone applications and wearables. Real-

time eye tracking and cameras are one of the most frequently reported devices used for 

distraction/attention and could be applied to trains and trams. Monitoring distraction and 

attention would be an important feature for trains and trams as both drivers may be required 

to drive monotonous stretches of track for extended periods of time and then attend to signals 

                                                           
4 https://www.seeingmachines.com/guardian/ 

https://www.seeingmachines.com/guardian/
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or navigate through/along complex traffic intersections, although trams may be sharing the 

road with other road users and thus those drivers need to remain attentive to any changes.  

 

In relation to fatigue and sleepiness, these states are typically measured using EEG, eye 

tracking, performance measures, subjective responses or cardiac measures. As with all the 

modes, there are practicality issues of using EEG, and performance measures are not overly 

useful for trains. Eye tracking (blink rate, PERCLOS) and cardiac measures, however, could 

be applicable. Eye tracking is used to detect sleepiness both in experimental studies and has 

been incorporated into commercial products, using cameras to monitor eye position, blinking, 

and closure. The recent focus within the literature has been to develop ECG measures which 

have potential to be used for fatigue/sleepiness monitoring. However, as trains and trams do 

not have a steering wheel the same as cars, buses or trucks, the ECG measures would have 

to be wearable or integrated into the controls in some way (e.g. the driving control for trains 

and trams), although this would likely just be one hand. Emotion, anger, stress and fear could 

potentially be measured using multiple measures such as ECG, EDA and cameras. Again, as 

trains and trams have no steering wheel to take ECG measures, wearable technologies must 

be used. In order to be possible to obtain these measures for train and tram drivers. 

 

Overall, it may be possible and feasible to monitor abnormal driving in train and trams by 

focusing on driver states such as distraction, inattention, fatigue and sleepiness, using ECG 

and eye tracking via cameras. Due to the differences in the cab of the trains and trams, 

CardioWheel would not be able to be used, however the technology could be used in the form 

of a wearable. 

 

2.4 Recommendations on environment monitoring 

In this section, emphasis is given on task demand. It is important to examine which 

technologies work better and for which factors with regards to the model and for experimental 

output. In addition, as mentioned in the previous section 2.3, a distinction per transport mode 

is made with regards to functionality, availability and cost, as well as other considered factors 

will include accuracy, validity, suitability, usability and acceptability. It is investigated which of 

the available measurements to be used for practical implementation of the STZ and the 

detection of abnormal driving behavior. 

 

2.4.1 Cars 

Changes in the objective state-of-the-world are not only caused by the motion and actions 

controlled by the vehicle operator, but also other phenomena external to the vehicle operator’s 

control as well (i.e. physical conditions of the road environment or the vehicle being operated, 

climatological circumstances, weather or time of the day). The state-of-the-art and technology 

available to the consortium evidenced that many of such external factor, i.e the (context) 

environment (al context), can be monitored using the vast array of (existing) technologies at 

the disposal of the consortium. Distinctive features for each technology are  indicated in 

boldface.  

 Mobileye: is an intelligent vision based commercial system that warns the driver when a 

specifit set of risk scearios are detected, e,g, whenever a driver. Specifically, it measures 

parameters such as time headway (TH) and headway level and monitors speed limit 

indication signals (SLI), begin and end of a forbidden overtaking zone, wipers activity 

(i.e. rainy weather), turn indicator activation/deactivation, detection of pedestrian ahead, 

potential pedestrian collision warning (PCW). Moreover, it detects vehicles ahead with 
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respect to a lead vehicle (all motorized vehicles) , in order to provide a forward collision 

warning (FCW) or an urban forward collision warning (UFCW), left and right lane 

departure warning and low visibility indicator (i.e. bad weather, direct sunlight). In 

addition, Mobileye implements some sort of similar STZ concept based on fixed 

independent and oblivious thresholds of potentially relevant driving environment (i.e. 

adverse weather) or operator context variables both in real-time and driver's relevant 

background data. Intervention technology and warnings strategies (i.e. visual, auditory) 

would be the same as used currently by Mobileye (i.e. EyeWatch).  

 OSeven smartphone app: measures general environment data such as driving during 

hours of increased risk, start and end trip time as well as total trip time. It should be 

mentioned that these parameters are not available for real-time interventions but only for 

after trip processing, but they can be readily implemented if needed. 

 CardioIDCam: captures road environment data by recording video clips pertaining detected 

dangerous events. CardioIDCam will only store roadway scene videos during generated 

Mobileye warnings or when extreme events are detected (e.g. during harsh acceleration, 

braking, tailgating, lane departure). 

 OBD-II device: which identifies start and end trip time and total trip time, providing real-

time and post-trip interventions and feedback to car drivers and will also capture speed 

profile evaluation that can also provide cues regarding distraction. 

 Digital road map data: uses GPS chip, magnetometer and gyroscope in order to provide 

annotated trip data with geolocated risk-related events and captured road video data 

on the i-DREAMS web user dashboard and smartphone app. 

 

All aforementioned variables provide a multi-dimensional measurement of environment 

parameters in order to identify risky driving behavior and consider departure from both typical 

and user-specific profiles. Road environment data from a dashcam (capturing video about 

detected dangerous events) and Mobileye (i.e. TH, speed signs and several warnings related 

to lane departure, insufficient headway) will be available in real-time for many car drivers and, 

in itself, this is a wealth of data for analysis. 

 

2.4.2 Trucks and buses 

Similar to section 2.3.2, trucks and buses will be treated jointly with respect to the selection of 

measurement technologies for monitoring the road environment.  

From the list of available monitoring technologies in section 2.2, the following are proposed for 

implementation in the i-DREAMS field trials to measure aspects of task demand in the context 

of trucks and buses. Distinctive features for each technology indicated in boldface.  

 Mobileye: enables the measurement of time headway and time-to-collision with respect 

to a lead vehicle and monitors for the presence of vulnerable road users in front of the 

vehicle (pedestrian or bicyclist), current speed limit, begin and end of a forbidden 

overtaking zone, rainy weather (i.e. based on use of wipers), poor visibility (e.g. bad 

weather, direct sunlight), and unintended left and right lane departure. 

 OSeven smartphone app: for the measurement of driving during risky hours and time 

of day in general. Since the use of the OSeven smartphone app for driver monitoring in 

trucks and buses is still under investigation, it is possible that this item will be removed 

from the final technology set. 

 CardioIDCam: a dashcam continuously filming the road environment in front of the vehicle 

and integrated into the CardioGW. CardioIDCam will only store roadway scene videos 

during generated Mobileye warnings or when extreme events are detected (e.g. during 

harsh acceleration, braking, tailgating, lane departure). 
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 Digital road map data: to show to the participant at the end of the day an overview of 

annotated trip data (i.e. with geolocated risk-related events and captured road video data) 

on the i-DREAMS web user dashboard and smartphone app. 

 

The relevance of the above data for the estimation of task load is of crucial importance. In 

particular, Mobileye data will provide critical indicators of task complexity imposed by the road 

environment. For example, the system only provides to the driver TH information which could 

be an important independent variable in the STZ model in order to define the risk level in real-

time. When task load imposed by the road environment increases and indicators of reduced 

operator state are identified, the different threshold levels of the STZ can then be changed 

dynamically in real-time, thus adding increased value when compared to convention/past 

ADAS systems (see more info in section 3 and 4). 

 

In the post-trip intervention framework (for details see Deliverable 3.3) drivers will receive 

feedback and scores (by means of a smartphone app and web-based dashboard) on their 

driving performance under different situations of increased task demand, reduced operator 

capacity and the departure from conventional/typical user driving profile. The post-trip 

intervention framework will also adopt gamification techniques to continuously engage and 

motivate drivers to improve their driving behavior aimed at developing safer drivers. 

 

2.4.3 Trains and trams 

The environment that trains and trams operate in is different to the road environment, which 

needs to be taken into consideration when considering environment monitoring. While trams 

share parts of their environment with other road users, often travelling on tracks which are on, 

or cross, the road, the environment of trains is operationally different and fundamentally to that 

of cars, buses or trucks. Trains run on independent tracks, occasionally crossing roads at level 

crossings, and at high speed. Signals control the environment trains operate in, organizing and 

controlling the distances between other trains, when to pass other trains, and who has priority. 

Because of these and other factors, several aspects of environment monitoring may not be 

relevant to trains.  

 

Existing systems already in place for train operations aid in place for train operations which aid 

in environment monitoring. Trains are installed with various warning systems such as Train 

Protection Systems (TPS), which use train detection and movement to safeguard train 

operations and aim to reduce the risk of driver error leading to accidents. Automatic Train 

Protection (ATP) systems monitor actual speed and enforce speed limits by applying brake 

applications if speed is exceeded, and Automatic Warning Systems (AWS) provide in cab 

warnings to the drivers of the next signal, which the drivers must ‘cancel’ otherwise the train 

brakes automatically. The Train Protection and Warning System (TPWS) was developed for 

British railways and applies full brakes if the speed limit is exceeded or if a train travels past a 

stop signalalal. AWS and TPWS are used in all trains by law in the UK.  

 

Systems such as Mobileye, which use forward facing cameras to help with collision avoidance 

may be less applicable to trains. A system may be useful to detect obstructions on the tracks, 

however, due to the speed at which trains can travel, by the time an alert has sounded, a driver 

may not have time to react. In relation to tram operations, Mobileye would be much more 

applicable, due to the shared environment trams operate in, and trams having a more 

immediate ability to stop when hazards are detected. 
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In terms of task demand and cognitive workload, trams may experience a more dynamic 

environment with further environmental factors to consider. Train drivers may experience 

stretches of monotonous driving, followed by more active tasks such as stations, busy 

intersections and crossings. Several environmental factors may also be less applicable to train 

operations. For the case of trains travelled distances are often substantially larger than for the 

case of trams with potential implications for shot brake in between trips. Weather may also be 

less of an important factor for trains and trams apart from extreme weather which could restrict 

visibility (signals, obstructions) or passage. Time of day is an important consideration in relation 

to night work and possible fatigue and sleepiness of drivers rather than in relation to 

environmental factors that may impact driving. 

 

The findings from WP2 indicate that task demand and task complexity can be measured using 

EEG, vehicle kinematics and skin conductance, as well as eye tracking and ECG, although the 

most frequent measure of task demand are physiological measures. The majority of these 

measures would be from wearables or taking measurements directly from the driver, which 

could be applicable to both trains and trams, however, they need to be realistic in terms of 

working environment. In relation to information processing and task performance the most 

representative and most used tools are Galvanic Skin Response (GSR), in-vehicle information 

or cameras. Vehicle information such as lane deviation, longitudinal/lateral movement, 

headway or collision warnings would most likely not be applicable to train or tram operations, 

however speed or braking metrics could potentially be informative, particularly in trams. 

Collison warnings may work for trams in shared environments if systems detect other vehicles 

or vulnerable road users. 

 

With regard to alerts, haptic and auditory warnings would be feasible but would have to work 

in the context of the work environment. Findings from Deliverable 2.2 suggest carefully chosen 

nomadic devices for visual and auditory warnings, which would work if adapted to suit train 

and tram operations.  

 

As for post-trip feedback, an app could potentially be adapted to suit train and tram operations, 

providing information on driver performance in relation to speed, signals, braking, attention, 

fatigue etc. Outputs may be different for train and trams, and therefore the metrics provided, 

or the technology used to collect the data. 

 

Overall, certain elements of environmental monitoring could be applicable to trains and trams, 

however, would most likely need to be adapted to suit the operation. Vehicle metrics could be 

recorded and would be useful for post-trip feedback and as an indication of abnormal driving, 

however trains and trams already have systems in place which aid with this. Mobileye could 

be useful and adapted to trams, due to their shared environment with other road users. It is 

also important to note that the majority of i-DREAMS testing with trains will likely be completed 

just in a simulated environment, due to the nature of the operation, rather than naturalistic field 

tests.  

 

2.5 Implications for the i-DREAMS platform 

The application of the presented technology for the different modes requires several design 

considerations. Each vehicle is different, and requires some degree of retrofitted technologies, 



D3.2 Toolbox of recommended data collection tools and monitoring methods and a conceptual definition of the 
Safety Tolerance Zone 

©i-DREAMS, 2020  Page 51 of 117 

even though ADAS devices are designed to be retrofitted in every situation, there are 

preferable use-cases. 

 

For example, CardioWheel can be installed using a steering wheel cover, or directly 

upholstering the steering wheel. The last case is only possible if the steering wheel is removed 

from the vehicle. Regarding the steering wheel covers, different diameters are available (but 

private car owners prefer not to install covers, so the preferable use-cases are trucks and 

buses). The battery life can also be an issue, but taking in consideration the trial duration, the 

risk is minimum having in mind that typical LiPo batteries and charge-discharge cycles have 

at least 500 cycles before performance degradation reduces their capacity to around 80/85% 

of the original value. 

 

The quality of the CardioWheel data is also very dependent on user cooperation, in the sense 

that both hands on wheel are required. It is possible to trigger alerts trying to get user attention 

in order to maximize the periods of continuous contact with the steering wheel. Furthermore, 

Electromagnetic Compatibility interference can contaminate the signal due to power line noise 

that can be found in laboratorial scenarios, even if in-vehicle environment is typically more 

preserved. Additional filtering is being developed to ensure sustained high data quality. 

Another relevant aspect of the installation is the power interface that will preferably be available 

via slipring, although it may not be possible for all test cases. As an alternative, CW can be 

powered using a battery, but, in such cases, it becomes necessary to recharge it from time-to-

time, , which may require a more frequent interaction between users and field trial staff and 

thus condition/bias the naturalistic aspect /conception of the trial. 

 

The Mobileye system can be installed in almost all existing vehicles, but the effort for 

installation differs significantly from vehicle to vehicle, in particular regarding the connection 

with vehicle CAN signals, which are typically available through OBD-II interface, but in some 

cases are found in alternative/proprietary (e.g. ISO K-Line standard interface). The restriction 

of vehicles that can be part of the experiments is being considered, but since it will make the 

recruitment process harder it is still under discussion.  

 

Regarding the use of OBD-II monitoring devices, the compatibility is guaranteed with almost 

all light vehicles, but for trucks and buses, there are variations that may lead to the impossibility 

to read all the available information. 

 

Additionally, regarding the vehicles’ warranty and the liability associate with the installation 

process, special care is being taken to devise a minimally invade installation procedure. The 

power interface will be performed, whenever possible, as means of fuse-splitters, assuring that 

there are no soldering connections with the car electrical installation, and the data acquisition 

will be performed using a CAN sensor that uses inductive principles.  

 

Another crucial step consists in ensuring the validity of acquired data. The proper determination 

of the driver identity is one of the key steps required both CardioWheel and OSeven device 

and applications allow the determination of the driver identity. However, this step requires the 

learning of the ECG profile and driver behavior in a previous moment. There is a potential 

threat that these biometric and behavior data do not meet the required quality, but prior to their 

implementation will be performed to guarantee data quality. 
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The aggregation of various data sources produced by different devices is a challenge, and the 

IoT gateway that will be used needs to be programmed to assure real-time interaction between 

them. Additional measures of safeguard in each device should be implemented, guaranteeing 

that whenever synchronization cannot be achieved no data loss will happen. This gateway 

must also have enough computing power to support real-time processing of sensor data, 

calculate derived variables/indicators, identify the level of abnormal driving, estimate the 

current position within the STZ and trigger appropriate interventions. Nevertheless, the 

implementation to be performed will take into consideration the available computing power and 

optimize it for edge computing. Furthermore, CardioWheel gateway inertial unit can be used 

for driving behavior analysis, through 4GB of RAM and a CPU with 4 A72 cores running at 

1.5GHz. The gateway can be coupled with tensor processing unit - TPU like CORAL from 

Google - to increase its computing power namely for deep learning inference. 

 

The vehicle selection process that will be conducted in the recruitment phase, must follow 

some clear and standardised guidelines in order to assure the installation procedure takes 

place in the seamless possible way. It is foreseeable that the installation will require always 

the interconnection with the vehicles’ CAN. 

 

The O7APP is compatible with Android software version 6.0 and later, iOS 11.4 and later. 

Regarding iOS mobile phone devices, the Application is compatible with iPhone devices 5s or 

later (with the exception of iPhone 5c). All data recording is “live” during driving and therefore 

the data recording procedure can be immediately adjusted to real-time interventions. The 

OSeven algorithms, though, are formulated up to now as post-trip evaluation algorithms. 

Several components, e.g. speeding can be easily transformed to real-time (as long as the data 

is available), whereas the customization of other components, e.g. harsh events, mobile use 

requires further validation. 
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3 Thresholds of interest 

3.1 General  

A key task in defining the i-DREAMS platform concerns the identification of adequate 

thresholds that are necessary to distinguish the different phases constituting the STZ. 

Contrarily to Deliverable 2.1, where parameter and indicator thresholds have been reviewed, 

more objective information with regards to threshold values about driver state and behavior 

can be provided in the current part of the document. This section, aims defining the basis of 

the already reviewed indicators, which are their typical values and suitable thresholds that 

enable the identification of the three different stages of the STZ. Accordingly, the chapter is 

organized as follows: firstly, the considered indicators are presented and a brief definition of 

each one is given; then, considerations regarding the specific modes addressed within i-

DREAMS are proposed; furthermore, the three stages of the STZ are revisited and the 

connection between each of them and the selected thresholds are also explained. Finally, 

popular values and thresholds are reported for each indicator, highlighting the mode and the 

STZ phase they relate to. 

 

3.1.1 Definition of the indicators  

This chapter recalls the indicators of driver performance in relation to longitudinal and lateral 

movement. It should be noted that the parameters relate mainly to road traffic, as 

train/tramway’s behavior is constrained by the railway itself. This implies that, as reported in 

Deliverable 3.1, for those specific modes any indicator would be irrelevant for lateral 

movement, whereas for longitudinal movement, headway measures could be relevant for 

trams, as they operate in the urban environment, but less so for trains, whose longitudinal 

movement is strictly regulated by a complex automated signals network and well establish 

priority rules. Nevertheless, some observations about the train/tram mode will be provided.  

 

As far as road transport is concerned, the summarized indicators are spread both for cars and 

heavy duty vehicles mode. The following indicators, are listed below: 

 Acceleration is found in previous studies referring to hard/extreme acceleration (Rolim et 

al., 2014), which have been widely correlated with situations of increasing danger. 

 Deceleration-Rate-to-Avoid-Crash (DRAC) is defined as the differential speed between 

the following and the lead vehicle divided by their closing time (Shi et al., 2018). 

 Time headway (TH) is the elapsed time between the front of the lead vehicle passing a 

point on the roadway and the front of the following vehicle passing the same point 

(Mahmud et al., 2017). 

 Distance Headway (DH) is the distance between corresponding points of the lead and 

host vehicles at any given time (Salim et al., 2010). 

 Time-To-Collision (TTC) is the time that remains until a collision between two vehicles 

would have occurred if the collision course and speed difference are maintained 

(Laureshyn et al., 2010). 

 Brake-Reaction-Time (BRT) is a parameter used to assess the stopping sight distance 

and to determine if the driver involved in an accident, reacted in “acceptable” time 

(Summala, 2000). 

 Time-Exposed-TTC (TET) refers to the total time a vehicle is exposed in risk situations, 

i.e. the time a TTC-event remains below a defined TTC-threshold (Mahmud et al., 2017). 
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 Time-To-Zebra (TTZ) is the distance to the zebra crossing divided by the speed and it is 

calculated as the time left for the car to reach the zebra crossing when the pedestrian is 

approaching the curb (Niezgoda et al., 2012). 

 Time-to-Accident (TTA) is the time remaining to an accident from the moment that one of 

the road users starts an evasive action, if they had continued with unchanged speed and 

directions (Mahmud et al., 2017). 

 Post-Encroachment-Time (PET) refers to the time interval between the moment when two 

road users cross the point where their respective paths intersect (Laureshyn et al., 2010). 

 Margin-To-Collision (MTC) refers to the ratio between the summation of the inter-vehicular 

distance and the stopping distance of the lead vehicle and the stopping distance of the 

following vehicle (Mahmud et al., 2017). 

 Standard Deviation of Lane Position (SDLP) reflects the degree of vehicular control a 

driver exerts in any particular driving situation (Mahmud et al., 2017). 

 Time-To-Line-Crossing (TLC) indicates the time it takes to reach the lane marking, 

assuming uniform motion, i.e. constant speed and heading, as per the 1st Newton law 

(Niezgoda et al., 2012). 

 

As it is recalled in (Bella and Russo, 2011), existing longitudinal collision avoidance systems 

typically rely on 2 criteria for the activation of collision avoidance: 

 Worst-case scenario: in this approach the system seeks to keep the minimum distance 

necessary for the vehicle to stop in case of a sudden brake of the leading car; 

 TTC: the system calculates the time remaining until a collision between two vehicles would 

have occurred if the collision course and speed difference are maintained. 

 

Based on these two criteria, alternative triggering strategies emerge: the kinetic one, which 

determines the minimum distance to stop safely by calculating the deceleration and reaction 

time at the current moment; and the perceptual approach, based on TTC calculation. 

 

Examples of the former are Mazda’s, PATH’s and Stop Distance algorithms, whereas the latter 

can be found in Honda’s, Honda’s CMBS and Hirst and Graham’s algorithms. It is worth 

mentioning that Mobileye also employs TTC for FCW. Table 8: summarizes the thresholds 

used by these existing systems. 

 

Table 8: Acceleration, minimum distance and TTC thresholds used in various existing systems 

Algorithm’s name Acceleration [m/s2] Min Distance [m] TTC [s] 

Mazda 6 5 - 

Stop Distance  5 - - 

PATH 6 5 - 

Honda - - 2,2 

Honda’s CMBS - - 

3 (attention phase) 

<2 (prevention phase) 

<1 (action phase) 

Hirst and Graham - - 3 
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3.1.2 Considerations about buses and trucks 

When dealing with trucks and buses, differences and similarities have to be considered when 

comparing to cars. Since these are also to road mode, their safety behavior can be evaluated 

using same indicators applied for light passenger vehicles. Nevertheless, both vehicular 

features and driver characteristics significantly differ: indeed, physical and operational features 

of heavy vehicles influence time headway, acceleration and deceleration (Weng et al., 2014), 

thus affecting the time needed for the bus and trucks to stop, being higher or longer than for 

cars. On the other hand, the professionalism and experience of drivers allow them to have 

shorter brake reaction times (Markkula et al., 2013). 

 

Relevant thresholds were suggested by Lehmer et al. (2005) for assessing safety benefits 

provided by warning systems performing a FOT on Volvo trucks. It specifically addresses TTC, 

lateral acceleration and reaction time. Two kinds of thresholds were considered: the first 

defines (in relation to kinds and not thresholds) the conditions for an event to be triggered, 

whereas the second one identifies conflict levels, namely conservative, medium and 

aggressive. 

For an event to be triggered, Lehmer et al. (2005) proposed the following conditions: 

 Longitudinal deceleration: >0.25g with brakes applied 

 Lateral acceleration: >0.20g 

 TTC: <4s 

 Following interval:<0.5s 

 

The thresholds combination to be observed in order to establish conflict severity is shown in 

Table 9:  

 

Table 9: Thresholds for reaction time and deceleration distinguished for different severity levels 
(Lehmer et al., 2005) 

Thresholds Reaction time [s] Required Deceleration [m/s2] 

Conservative 1.5 2,44 

Medium 1.0 3,05 

Aggressive 0.5 3,66 

 

Also, Bao et al. (2012) time headway and brake reaction time as truck safety indicators. It was 

found that in normal, day-light conditions the mean headway is 3.10s, while minimum time 

headway values 1.26s, 0.92s and 0.89s respectively for dense, moderate and sparse traffic 

conditions. Finally, driver brake reaction time was found to be 1.88s in baseline conditions, 

with a shorter BRT with daylight conditions (1.69s) than during night-time. Additionally, authors 

suggest a minimum of 2.5s headway time for truck drivers. 

 

3.1.3 Considerations on trains and tramways 

Due to the particular configuration of the railway mode (trains and tramways), the indicators 

applied to road transport cannot be applied for safety assessment. As a matter of fact, in 

railway system, safety is mainly reliant on infrastructure sensors (Katz and Schulz, 2013). 

Unfortunately, while many historical crash data studies about railway systems have been 

developed in literature, conveying a wide overview of the factors inducing accidents (Restel 
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and Wolniewicz, 2017, Kyriakidis, Hirsch and Majumdar, 2012, Naznin, Currie and Logan, 

2018), few studies concerning safety indicators and related thresholds have been found. 

 

Mode specificities pertaining trains limit the establishment of parallels and comparisons with 

road modes. Some examples of these are the fixed configuration of the infrastructure, the 

highly constrained operator behavior and the signal-respect-based movement of trains, which 

lead to deterministic movement patterns, the proximity of tracks, which requires a very precise 

position detection, high punctual densities and the topology of the lines, which can impair signal 

reception (Lehner et al., 2008). 

 

As mentioned also in Deliverable 3.1, trains are not free to move laterally, so indicators about 

this behavior cannot be applied. Longitudinal behavior, on its turn, is governed by the strict 

respect for the signalization and by adjusting/monitoring speed. Keeping in mind these 

observations, the most used safety element is the concept of Signal Passed At Danger 

(SPAD), which indicates the event of a train failing to a signal showing red danger stop 

(Kyriakidis et al., 2012). As it can be easily understood, this measure denounces a situation of 

already existing danger and thus cannot be used as preventive parameter to define the 

different STZ phases. 

 

Literature about railway safety, specifically focusing on Protection and Warning Systems as 

well as on SPADs, Connor and Schmid (2019) and Nikandros and Tombs (2007) also highlight 

monitoring vehicle’s speed as the core element for reducing the risk of SPADs. When 

compared to trains, tramways add some possible considerations: operating mainly in urban 

areas implies they often interact with road traffic, thus allowing the assumption that some of 

the recalled road safety indicators (e.g. acceleration, DRAC, TTC, TTA, PET) could be also 

applied, with suitable adaptations, to the interaction among trams with other road participants. 

Li (2018) emphasizes that, similarly to what happens with cars, trams are required attention 

for preventing lateral collisions with other vehicles and vulnerable road users, such as 

pedestrians and cyclists. Nevertheless, the obvious differences in sizes and weight does not a 

allow tams to be totally comparable to cars. Also, Li (2018) suggests the possibility of referring 

to driverless car studies to obtain useful information suitable for trams, though taking into 

account the recalled restrictions.  

 

3.1.4 Theoretical connection among the thresholds and the three STZ stages 

Since the STZ concept proposed in the current project is new, there is no straightforward 

connection between the values and thresholds of the indicators reported in literature and the 

different STZ stages. As a result, some assumptions must be made in order to link the 

measurable parameters and their values to define the recalled STZ phases. For the sake of 

completeness, here the stages of STZ and their definitions are reported and the theoretical link 

with the parameters thresholds is identified. 

 

Specifically, as reported in Deliverable 3.1, where the Safety Tolerance Zone is 

conceptualized, the STZ comprises three phases, namely: “Normal driving”, “Dangerous 

driving” and “Avoidable accident”, which are defined as follows:  

 Normal Driving is the subzone of the STZ where, based on current conditions in the 

objective state-of-the world, there is no indication that a collision scenario is likely to unfold 

at that point of time. 
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 Dangerous Driving refers to the phase of the STZ where, based on current conditions in 

the objective state-of-the-world, the potential for developing a collision scenario is 

detected. 

 Avoidable accident is that particular stage of the STZ where, based on current conditions 

in the objective state-of-the-world, a collision scenario is actually starting to develop, but 

the vehicle operator still has the potential to intervene and avoid a crash. 

 

In literature, risk indicators are usually measured referring to normal driving behaviors, e.g. 

when creating and analysing driving cycles and for detecting possible dangerous situations, 

reporting discrete values, which define the boundary between the two conditions. In some 

particular cases, the defined safety levels (e.g. Honda CMBS inTable 8: Table 8: ), may bare 

some connection with the STZ phases. To adapt them to the needs of the concept, ranges 

which relate to the three stages need to be identified, instead of discrete limits. Leveraging the 

available, reviewed information, the following connections have been established since Normal 

driving represents the majority of the driving conditions and considers only situations where no 

collision is going to happen, frequent values of the recalled parameters are used to define the 

range for this STZ phase, where the term frequent values describes measures obtained during 

driving cycles in which no increased risk scenarios are developed. On the other hand, Danger 

phase becomes by the range of measures in between the previously identified stages. Finally, 

the Avoidable Accident phase is defined by the range of values, exceeding the discrete 

thresholds found for dangerous situations. 

 

3.1.5 Ranges and thresholds 

In literature Collision Warning Systems can be found for light vehicles, including variables of 

interest and respective thresholds. Fewer studies are however available referring to 

trucks/buses and indications concerning rail modes are seldom provided. Moreover, while for 

some indicators, the values reported by different studies tend to agree, for other parameters 

there are significant divergences. Although many indicators have been defined for surrogate 

safety studies, not all of them are often utilized. Particularly, the most addressed safety 

parameters are acceleration/deceleration, TH, TTC and BRT. As for other indicators, even 

though thresholds may be found for cars these are not available and thus cannot be proposed 

for remaining transport modes  

 

Therefore, once these thresholds and ranges become and are implement, extensive testing 

will be carried out to verify their reliability by triggering correct, useful and timely alerts. Table 

10:  summarizes the indicators and respective thresholds, which can be used in the definition 

of the STZ levels. 

 

Table 10: Proposed thresholds for i-DREAMS modes 

Indicator 
CARS TRUCKS / BUSES 

Normal Dangerous Avoidable Normal Dangerous Avoidable 

Acceleration <0.31g 
0.31g – 
0.45g 

> 0.45g 
<0.25g 

(deceleration) 
0.25-0.3 >0.3 

DRAC <3.3m/s2 3.35-3.4m/s2 >3.4 m/s2    

TH 
1.8s – 
2.8s 

0.6s - 
1.4/1.8 s 

<0.6s >2.5s 2.5s – 1.26s <1.26s 

TTC >3/3.5s 1.5s – 3s <1/1.5s >4s   
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Indicator 
CARS TRUCKS / BUSES 

Normal Dangerous Avoidable Normal Dangerous Avoidable 

BRT 3.5s-4.0s   1.69/1.88s 1.69s-1.5s <1.0s 

TTZ 3s-5s <3s     

TTA   <1/1.5s    

PET   <1/1.5s    

MTC   <1    

TLC  <1s     

 

As previously recalled, unfortunately, for rail modes only distance of 8m appears to be 

incredibly small in case of normal and dangerous conditions, being the values over 8m for 

normal driving and under 5m for dangerous driving situations, respectively. 

 

3.2 Recommendations on triggering interventions 

 

3.2.1 Driving style recognition and their incorporation in i-DREAMS real-time 

intervention approach 
 

Background 

Extensive literature has been devoted to predict/recognize driving style given a particular 
objective, e.g. safety, fuel economy and behavioral analysis. The majority of the studies include 
only vehicle-associated parameters obtained from sources such as vehicle sensors, sensor 
installed in smartphone devices or other custom-built devices. These studies are based 
on/build on the assumption that changes in these parameters (speed, fuel consumption, 
acceleration, throttle, braking power and frequency, throttle, jerk, sharp turn, and deceleration) 
may also be influenced by the environment and driver state (Khan and Lee, 2019). Based on 
the review of existing literature, a general procedure can be employed. Driving style is 
proposed below: 
 

 Firstly, based on the specific objective (i.e. safety), classification levels are set out for a 
driving style. Often discrete levels are considered such as normal driving, aggressive 
driving and dangerous driving. Most studies consider 2 to 5 level to characterize the 
degree to which driver departures from the normal driving behavior (Khan and Lee, 2019). 
The classification can be attributed to the drivers using relevant risk indicator variables by 
following one of two alternative approaches: 
 
1) Using some rules, experts opinions/driving behavior or a following a questionnaire-

based approach and thresholds values of certain important risk indicator variables 
(Jachimczyk et al., 2018; Teimouri and Ghatee, 2018).  

2) Using unsupervised clustering technique (k-mean, fuzzy clustering method etc.) to 
label driving behavior based on threshold values of key risk indicator variables. This 
method is claimed to have better reliability as it rules out subjective judgements and 
uses the same dataset employed to model driving style recognition (Shi et al., 2019; 
Xue et al., 2019). 
 
The more common variables (risk indicators) are listed below:  
 TTC or a modified, e.g. inverse TTC (Chen and Qin, 2019; Shi et al., 2019; Xie 

et al., 2019; Xue et al., 2019). 
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 MMTC (Xie et al., 2019). 
 Time gap/Time headway (Chen and Qin, 2019; Xie et al., 2019; Zhu et al., 2019). 
 Crash potential index (Shi et al., 2019).  
 Longitudinal acceleration beyond ±0.3g (Fazeen et al., 2012; Chen et al., 2019; 

Zhu et al., 2019).  
 Lateral acceleration beyond ±0.3g (Chen et al., 2019; Fazeen et al., 2012). 
 Lane changing behavior (Chen et al., 2017). 

 

 The next step concern the extraction of driving features from the dataset, which are then 
related to driving styles labelled in the initial step. Most studies used trajectory-based 
dataset in this context, either from vehicle or smartphone sensors. For example, Shi et al. 
(2019) extracted 64 features from trajectory data set that are composed of velocity, 
acceleration, position, time gap etc. These features are basically derived statistics from 
distribution of variables (such as mean, kurtosis, median, range, standard deviations, 
various percentiles values, etc.). The selection of variables found on these studies is 
mostly dependent on the available dataset as there is no general agreement found in the 
literature on the recommended set of signals and sensors. This is also true for variables 
used for classifying driving style (Khan and Lee, 2019; Taubman-Ben-Ari et al., 2004).  

 The features extracted from vehicle trajectory dataset of labelled driving styles are then 
associated together. This is done mostly by using machine learning algorithms such as 
Support Vector Machine (Wu et al., 2018; Xue et al., 2019), Random Forest (Wu et al., 
2018; Xue et al., 2019), XGBOOST (Shi et al., 2019), Generalized mixture model (Zhu et 
al., 2019), Neural network-based model (Wijnands et al., 2018), Hidden Markov Model  
(Xie et al., 2019) and Markov Chain model (Xiong et al., 2018). A recent study (Zhang et 
al., 2018) also employed deep machine learning technique for this purpose. Results 
provided contradictory evaluation when comparing the quality/success of the different 
methods regarding the prediction of driving behavior and showed that these techniques 
can predict driving styles with over 70% accuracy. 

 

Driving style recognition and STZ concept 
The STZ is a theoretical concept and is central to the i-DREAMS platform. It is described as 
the zone where the task demand may need special actions from the driver to cope with them. 
Within i-DREAMS, the STZ is considered to have three phases (as reported in Deliverable 
3.1), namely, Normal driving phase, Danger phase and Avoidable accident phase. The latter 
two dictate the need for real-time interventions. Based on the consideration of the type of 
accident risk the i-DREAMS platform may handle, the driving style recognition can be 
considered as a critical input in the modelling framework that controls the intervention triggering 
mechanism for different risk situations. For example, in the case of rear-end collision risk 
situation, within i-DREAMS, it is planned to control the TTC thresholds (a value of TTC before 
the real-time intervention) in such a manner that these can be dynamically adjusted (e.g. in 
adverse weather conditions TTC threshold value can be increased). Similarly, during the 
episode where a driver is departing from its normal behavior, TTC thresholds can be assigned 
a larger value, and therefore, the driver would be warned much earlier when compared to an 
episode when his/her behavior is recognized as normal. This can be applied to other risk-
situations that will be covered within i-DREAMS. 
 
A user’s driving style can thus be characterized as Normal driving or Abnormal driving based 
on certain classification/clustering algorithms as usually done during the initial step of the 
procedure. In principle, there can be multiple intermediary states between Normal and 
Abnormal driving. Ideally, the clustering algorithm applied to the dataset will be able to provide 
an exact number of states represented from the datasets and the following considerations are 
required: 
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1. Driver’s vehicle trajectory dataset that contains the information about events and other 
variables, which are required to be measured over time. Often, as the literature 
demonstrates, Normal and Abnormal driving styles cannot be determined as a certain 
time event, but needs to be determined as an episode within a certain trip (i.e. driving 
context). The time window of the episode is strictly dependent on the frequency within 
which variable values are available from the given technology. Studies can be found 
using distinct tie windows, ranging from 3 seconds up to 5 minutes. Sliding time 
window (let’s say of a 5 sec period) is a time window, where a next second is added 
and the first second of a time window is dropped to develop a partially overlapping 
time window in case the data frequency is per second.  

 
For each driver, based on the sliding time window technique, as employed in other 
studies, such as Chen et al. (2019), variables/risk indicators values (if available at 1 
second interval) are averaged for the length of sliding window. Higher weight can also 
be considered for the values of variable corresponding to the new second that is just 
added to the time window while averaging. This step produces the dataset which 
follows a time interval equal to the length of time window. However, because of the 
use of sliding window technique, there is almost no loss of data granularity and at the 
same time it provides an advantage that time window has a larger length. For example 
in Figure 12, the first row indicate data availability for each second time interval for let 
say 11 seconds, the first time window is composed of taking an average of values of 
data for the first 5 seconds. The next time window is composed of dropping the data 
values of the 1st second and at the same time adding the data values of the 6th second 
and then take the averages. The process is then further repeated.  

 
2. There exists a possibility that certain criteria/threshold values relating to important risk 

indicators can be set as a priori, to distinguish the Normal and Abnormal states from 
driving according to the risk as given in Table 11. Cluster algorithm can also be used 
to classify/label a time window as an episode of normal driving or abnormal driving 
and those prior threshold values can be uses as a guidelines for labelling or validating 
the cluster. This is shown arbitrarily in Figure 12, where e.g. 4th time window and 7th 
time window are indicating episode of abnormal driving. More detail on this are 
provided in the next sub-section. 
 

3. The next step, in the context of i-DREAMS, could be different here compared to the 
general approach followed in the literature where the aim is to associate/correlate 
trajectory features with identified clusters of driving style. In relation to i-DREAMS the 
technologies will be installed in the vehicles, and along with the trajectory data all 
other risk indicators variables values will be available, so it is not required to develop 
a model that associates trajectory features with driving style; however, a distance 
function/classification algorithm (e.g. K-NN algorithm or Jaccard index) can be applied 
on the test data (obtained based on the values of variables of a sliding window) to 
predict the class of driving style to which it belongs. 
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Figure 12: Sliding time windows (TW) of Normal and Abnormal driving style episodes for a particular driver (green 

colour present an episode of normal, red colour represent an episode of Abnormal driving) 

 

3.2.2 i-DREAMS technology and risk indicators for driving styles with 

recommendation of threshold values 
 

Determining driving style within a driving simulator experiment would mostly be impracticable, 

since it would require numerous hours of driving for each individual to clearly identify his 

respective driving style. Therefore, it is foreseeable that the required data may only be available 

as input for on-road trials within i-DREAMS. Given the i-DREAMS technology, limited risk 

situations (accident types) can be covered such as rear-end collision, or collision with 

pedestrians ahead. Lane departure warning is also available to cover head-on collision in 

situations, where driving is carried out on two-lane roads. It is, therefore, recommended that a 

driving style or behavior recognition and their indicator are generalised and applicable for all 

risk situation that one is able to capture with the available technology. Table 11 provides an 

overview of available variables (risk indicator) that could be used to identify normal and 

abnormal driving behavior in cars, buses and trucks. The threshold values provided in the table 

could be used as a guidelines to label the clusters which are taken from the existing literature. 

As the clustering mechanism itself able to identify what would be the threshold values of risk 

indicators for each driver, however, it is always useful to validate the labelling process of the 

clusters and the values mentioned in Table 11 can be useful in this aspect. More exploratory 

work is required when the data is available to see which variables/risk indicators are more 

appropriate. It is also possible that certain variables in Table 11 can be given high weight to 

appropriately distinguish between normal and abnormal driving styles. This can also help 

distinguish what causes abnormal driving behavior.  

 

Table 11: Risk indicators/variables and their threshold values to recognize abnormal driving behavior 

Variables/Risk 
Indicator 

Car Bus/ Truck 

 i-Dreams technology Units Threshold value 
to classify for 

abnormal driving 

i-Dreams Technology 
type 

Units Threshold value to 
classify for abnormal 

driving 

Time headway Mobileye Sec 2.0 sec4 Mobileye Sec 2.5 sec4 

Speed 
Exceedance2 

Mobileye Km/hr 10%5 Mobileye Km/hr 5% 

Speed at turns 
indication3 

Mobileye Km/hr 5% Mobileye Km/hr 5% 

1 2 3 4 5 6 7 8 9 10 11

1 TW

2 TW

3 TW

4 TW

5 TW

6 TW

7 TW

Driver 1
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Variables/Risk 
Indicator 

Car Bus/ Truck 

Pedestrian 
Collision Warning 

Mobileye Indicator Yes Mobileye Indicator Yes 

Forward Collision 
Warning 

Mobileye Indicator Yes Mobileye Indicator Yes 

Urban Forward 
Collision Warning 

Mobileye Indicator Yes Mobileye Indicator Yes 

Left lane 
departure 
warning 

Mobileye Indicator Yes Mobileye Indicator Yes 

Right lane 
departure 
warning 

Mobileye Indicator Yes Mobileye Indicator Yes 

Long driving 
hours 

CardioID Gateway Hh:mm:ss 4-6 hours CardioID Gateway Hh:mm:ss 8 hours6 

Longitudinal 
Acceleration 
/deceleration 

CardioID Gateway m/sec2 Beyond ±0.3g7 CardioID Gateway m/sec2 Beyond ±0.3g 

Driver Attention 
Level (Sleepiness 

level) 

Wristband Level (0-100) 508 N/A N/A N/A 

Stress level using 
Interbeat Interval 

Wristband milliseconds  CardioWheel milliseconds  

Stress level using 
PPG and 

GSR/EDA signal 

Wristband --  CardioWheel  
(ECG signal) 

---  

Harsh 
acceleration 

CardioID Gateway Indicator Yes CardioID Gateway Indicator Yes 

Hands on Wheel N/A N/A N/A CardioWheel  Indicator Yes 

Steering Wheel 
Accelerometer 

N/A N/A N/A CardioWheel degrees  

 
1Threshold value recommended and subject to change when algorithms are implemented to distinguish between 
normal and abnormal driving style, these are based on finding of existing literature  
2Processed variable based on speed limit indication and vehicle speed 
3Processed variable based on turn indication activation and vehicle speed exceedance 
4Xue et al (2019) 
5Based on 10% +2mph rule 
6Recommended 8 hours before breaking for professional truck and bus drivers, for cars it is considered around 4-
6 hours 
7Fazeen et al (2012) and Chen et al (2019) 
8Based on Honda system where 4 bars are used to represent driver attention level, when 2 bars are detected, low 
attention is indicated; therefore a value below is considered here as an indication of driver decreased attention 
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4 The mathematical model of the STZ  

4.1 Brief description of the STZ  
Within a transport system, a driver can be regarded as a human operator (technology assisted) 
self-regulating control over transportation vehicles in the context of crash avoidance. The 
concept of the STZ within the i-DREAMS platform attempts to describe short of the range at 
which self-regulated control is considered safe. It is based on Fuller’s Task Capability Interface 
Model (Ray Fuller, 2011, 2005, 2000) which states that loss of control occurs when the demand 
of a driving task outweighs the operator’s capability. The STZ comrises three phases: Normal 
driving phase, Danger phase and Avoidable accident phase. Within a transport system, a driver 
can be viewed as a human operator (technology assisted) self-regulating control over 
transportation vehicles in the context of crash avoidance. The concept of the STZ within the i-
DREAMS platform attempts to describe the point at which self-regulated control is considered 
safe. It is based on Fuller’s Task Capability Interface Model (Ray Fuller, 2011, 2005, 2000), 
which states that loss of control occurs when the demand of the driving task outweighs the 
operator’s capability). The STZ contains three phases: normal driving phase, danger phase 
and avoidable accident phase. 
 
The Normal driving refers to the phase where conditions at that point in time suggest that a 
crash is unlikely to occur and therefore the crash risk is low and the operator is successfully 
adjusting their behavior to meet task demands. Fundamental goal of the i-DREAMS platform 
is to keep drivers within this normal phase. The danger phase is characterised by changes to 
the Normal driving that suggest a cash may occur and therefore, there is an increased crash 
risk. At this stage a crash is not inevitable but becomes more likely. The STZ switches to the 
Danger phase whenever instantaneous measurements detect changes that imply an increased 
crash risk. Lastly, the switch to Avoidable Accident phase occurs when a collision scenario is 
developing but there is still time for the operator to intervene in order to avoid the crash. In this 
phase, the need for action is more urgent as if there are no changes or corrections in the road 
or rail traffic system or an evasive  manoeuvre is performed by the operator a crash is very 
likely to occur. 
 

The i-DREAMS platform is composed of two modules. The first is the monitoring module that 
takes measurements relating to the "Context" (environment including infrastructure), 
"Operator" (driver state and demographic characteristics) and "Vehicle" (technical 
specifications and current state). These measurements are used to infer the demands of the 
driving task and the driver's capability to cope with these demands. These measurements and 
inferences on its turn used to estimate in which phase within the STZ the driver is operating 
within at each moment in time. The second module is the in-vehicle intervention module, that 
is responsible for keeping the driver within the Normal phase of the STZ all the times, either 
by providing a warning or instruction during driving (real-time intervention) or providing 
information with detailed feedback on the trip as well as improving their performance once the 
driving task has ended (post-trip intervention). The STZ phase, within which the driver is 
operating, dictates the type of real-time intervention that is delivered. In the Normal driving 
phase, no intervention is needed. If it is detected that a driver has entered the Danger phase, 
a warning or advice should be given. Entering the Avoidable accident phase also requires an 
intervention, but this may need to be more specific and provide an instruction signal, which 
impels the operator to take a decisive action. 
 
The conceptual state of the STZ changes dynamically depending upon changes in the driving 
conditions/system of which the operator is an integral part. The drivers’ self-regulated control 
has many influences, one of which is the driver’s own perception of the driving conditions. 
Drivers seek to maintain a level of risk that they are comfortable with and continuously adapt 
their behavior to achieve the subject to a complex network of underlying motivations, not all of 
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which relate to safety. This implies that drivers may choose to intentionally behave in a way 
that objectively would be considered unsafe (i.e. travelling close to a vehicle ahead). A driver’s 
subjective appraisal of risk does not necessarily therefore correspond to that calculated with 
objective measures, nevertheless the driver would still be classed as operating within the 
Danger or Avoidable accident phases of the STZ (Ray Fuller, 2011). Drivers may choose to 
behave in a way that objectively would be considered unsafe (i.e. travelling close to a vehicle 
ahead). A driver’s subjective appraisal of risk does not necessarily therefore correspond to that 
calculated with objective measures, nevertheless the driver would still be classed as operating 
within the Danger phase or Avoidable accident phase of the STZ. 
 

4.2 Problem formulation 

In order to model the STZ, the available data as well as the potential outcome of the model 

need to be considered. For suggesting a positive outcome, the data to be used as input for the 

model will be available in real-time, as the measurements of task demand and coping capacity 

are going to be sequential. Furthermore, as the STZ is the “trigger” for real-time and post-trip 

interventions, the algorithm outputs are required also to be provided online as in real-time and 

hence both dynamic and static modelling approaches need to be considered. As previously 

mentioned, the STZ has three levels: Normal driving, Danger and Avoidable accident phases. 

Distinguishing between these three levels in real-time, turns STZ modelling into a ternary 

classification problem, where raw measurements need to be classified as belonging to one of 

the three existing levels. This classification problem however implies that the feed to the 

training part of these algorithms needs to be conveniently labelled. The following section 

reviews both static and dynamic approaches that could be employed to convert driving 

behavior data into meaningful STZ information. 

 

4.3 Literature Review on relevant models  

Predicting driving behavior by employing mathematical driver models, obtained directly from 

the observed driving-behavior data, has gained much attention in literature (Girma et al., 2019; 

Kanaan et al., 2019; McDonald et al., 2019; Xue et al., 2019; Zou et al., 2018). Several models 

have been used to address road safety and the estimation of driving behavior, many of which 

in the context of experimental studies, including driving simulator studies and field operational 

trials and/or naturalistic driving studies. A review of safety models can be found in (Hughes, 

Newstead, Anund, Shu, & Falkmer, 2015), where the authors noted inconsistency in the 

language of safety models and emphasized that additional factors should be investigated, such 

as the effect of organizational culture, emergency responses, the health system and economic 

influences on-road safety. In their opinion, there are models with potential to improve road 

safety, but yet to be applied. Accordingly, the aim of this section is to examine different models 

as well as methodologies that include the relationship and interaction between task demand 

and coping capacity. Several state-of-the-art methodological approaches that enable the 

modelling of crash risk in real-time are evaluated. In addition, a focus will be made on the 

modelling and methodologies that detect normal and abnormal driving. As a result, the most 

suitable model, able to estimate driving behavior and crash risk as well as identify abnormal 

driving, will be employed for the scope of the i-DREAMS project. Literature was searched within 

popular scientific databases such as Scopus, ScienceDirect and Google Scholar. All studies 

were screened on the basis of their title and abstract in order to select the studies presented 

in the following review. An example of key words used per factor analysed, as well as the 

number of screened and included papers is given on Table 12. 
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Table 12: Key words, screened and included papers per factor analysed 

Key words  Screened papers Included papers 

"risk level" OR "crash risk" OR "collision risk" OR "accident risk" AND 
"real-time" OR "model" AND "modelling" AND "driver behavior models" 

74 21 

"driver behavior" OR "abnormal driving" AND "real-time" OR "model" 
AND "modelling" AND "driver behavior models" 

73 14 

"road safety" AND "risk" AND "structural equation" 49 14 

 

4.3.1 Machine Learning vs Other Conventional Statistical Models 

The nature of multiple real world driving behavior data is intricate and poses complex 

chalanges. To this end, specialized machine learning and statistical algorithms have been 

developed in order to overcome these problems. 

 

Machine Learning (ML) algorithms build a mathematical model based on sample data, known 

as "training data", in order to make predictions or decisions without being explicitly 

programmed to perform the task (Koza et al., 1996; Burr, 2008). Alternatively, ML models have 

been used in a wide variety of applications, for which it is/especially in cases where it is difficult 

or infeasible to develop a conventional algorithm for effectively performing the task. 

 

On the contrary, statistical algorithms contain variables that can be used to explain 

relationships between other variables. These models are used either to infer something about 

the relationships within the data or to create a model that can predict future values. Statistical 

models use sampling, probability spaces, assumptions and diagnostics in order to make 

inferences. 

Consequently, the major difference between machine learning and statistical models is indeed 

their purpose. Machine learning models are designed to make the most accurate and 

repeatable predictions possible, while statistical models are designed for inference about the 

relationships between variables, as well as the significance of those relationships. 

 

4.3.2  Approaches concerned with safe/dangerous driving 

In the present section, several models and methodologies that correlate driving behavior with 

the probability and the severity of an accident risk are examined. 

 

Definition of safe/dangerous driving 

First of all, it is important to establish a definition of safe and dangerous driving. As a starting 

point, safe driving can be regarded as the practice of using driving strategies that minimize the 

probability of risk or the severity of a crash and thus help avoiding accidents by predicting 

hazardous situations on the road (Justen, 2008). Conversely, dangerous driving is found when 

an individual's driving falls below the expected level of a careful and competent driver (Dula 

and Geller, 2003). It can also be classed as dangerous driving scenarios where the vehicle 

being driven is in a dangerous condition and not suitable to be on public roads. Several models 

have been formulated that quantify the relationship between crashes, near crashes and crash-
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relevant conflicts (Wu et al., 2014). These variables can be thought of as outcomes with an 

ordered level of severity.  

 

Bayesian Networks  

In recent years, BNs have been quite popular in modelling massive amounts of data with the 

need for data aggregation and model flexibility (Li et al., 2014; Tandon et al., 2016). Lefèvre et 

al. (2012) proposed a DBN which focused on intersection accidents caused by driver errors. 

Their approach was formulated as an inference problem where intention and expectation were 

estimated jointly for the vehicles converging to the same intersection and the proposed solution 

was validated by field experiments using passenger vehicles. The results demonstrated the 

ability of the algorithm to issue a warning in dangerous situations, and the benefits of taking 

into account interactions between the vehicles when reasoning about situations and risk at 

road intersections. The use of the Bayesian formalism allowed to take into account 

uncertainties on the relationships between the variables. The intuitive formulation of risk 

provided the required flexibility for safety applications relevant to both ADAS and autonomous 

driving. However, information about drivers’ actions, such as steering angle and pedal 

pressure were not taken into account. In addition, Zhu et al. (2017) utilized a hierarchical BN 

model to investigate the relationship between observed vehicle motion and a driver's historical 

crash involvements through the hidden layers of driving behavior and crash risk. The results 

suggested that the contextual model performs significantly better than the non-contextual 

model. The method was also effective in handling massive trajectory data and flexible in the 

data aggregation process. However, the contextual indicators have been more comprehensive 

by including more variables beyond current roadway type, traffic and relative speeds. 

 

Katrakazas et al. (2019) developed a new risk assessment methodology that integrates a 

collision risk network-level (CRN) with collision risk vehicle-level (CRV) estimates in real-time 

under the joint framework of interaction-aware motion models and DBN. Results indicated an 

enhancement of the interaction-aware model by up to 10%, when traffic conditions were 

deemed as collision-prone. The network-level collision information could assist not only the 

identification of “dangerous” road users but also act as a safety net for all the motion planning 

levels and is suitable for Connected and Autonomous Vehicles (CAVs). It is however 

noteworthy that the extracted probabilities for all the scenarios were not sufficiently high and 

the scenarios were built on some assumptions and without highly detailed vehicle-level data. 

The work by Shankar et al. (2008) pointed out that hierarchical DBN can be used to reflect how 

driver decisions are made: driver-level predictors, such as years of driving, can be used to 

parameterize the effects of event attributes and context. There were found some advantages 

related to parameter uncertainty, sample specificity and extensibility to large data sets, which 

can capture driver differences over time and space, but non automated storage of data through 

the DAS with a flag for potential risk was identified. 

 

A review of computational Bayesian econometrics and statistics applied to transportation 

modelling problems in road safety analysis and travel behavior (Daziano et al., 2013) 

presented Bayes estimators as a potential alternative to outperform frequentist estimators, 

especially in small samples and weakly identified models. Bayesian models, particularly the 

Multivariate Poisson log-normal model (MVPLN), were used to estimate the probability of an 

individual being a high-risk driver (Wu et al., 2014), using SHRP2 data: (data from a 100-Car 

Naturalistic Driving Study dataset containing driver-related information such as stress, coffee 

intake, sleeping hours, etc.), providing results in accordance to the ones from the previous 

studies and national surveys. 
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Support Vector Machines 

Yokoyama and Toyoda (2015) used Support Vector Machines (SVMs) with Gaussian kernel 

and an analysis method of driving behaviors based on large-scale and long-term vehicle 

recorder data to support fleet driver management by classifying drivers by their skill, safety, 

physical or mental fatigue and aggressiveness. The entropy-like model and Kullback Leibler 

divergence model that aim to emphasize the behavioral departure from average drivers were 

proposed for the classification. The results have shown that these methods can successfully 

find some informative driving operation behaviors that might cause accidents and examined a 

large scale log of vehicle data recorder. However, the frequencies at rare bins were small with 

short term operation. In the proposed method operator's geo-location and weather were not 

taken into consideration, while a daily review of vehicle recorder data might not have the ability 

to distinguish an abnormal and unsafe behavior. SVM and k-means algorithms have also been 

applied to recognize normal, aggressive or risk driving style based on the trajectory risk levels 

(Xue et al., 2019). Specifically, Discrete Fourier Transform (DFT), Discrete Wavelet Transform 

(DWT) and statistical methods were adopted to extract the effective features from trajectory 

data to enable the driving style recognition. The results indicated that the proposed SVM 

method was a more appropriate method, which can be effectively used to label the driving 

style, by comparison with RF, kNN and Multi-Layer Perceptron (MLP) algorithms, displaying 

an accuracy of 91.7%, a precision of 92.8% and a recall of 81.8%. The model with machine 

learning algorithm helped to evaluate the collision risk on the road network with high accuracy 

and also provided real-time decision support to drivers, but road conditions and traffic flow 

level which influence driving style were not taken into consideration.  

 

Fuzzy Logic Models 

Machine learning techniques have been used in primarily traffic flow modelling and second in 

road safety analysis. Imkamon et al. (2008) proposed a new Fuzzy Logic inference system 

which can record driving events, detect unsafe or risk driving behavior and classify levels of 

hazardous driving by employing data from sensors that measure three different perspectives 

(an ECU reader, an accelerometer, and a camera). The test results showed that the system 

can perform well compared with human opinions. However, the current system had a limitation 

of day-time operation due to constraints. In addition, Chong et al. (2013) trained a fuzzy rule-

based neural network to model the acceleration of a car-following vehicle. Fuzzy logic was 

used to discretize traffic state and action variables and reinforcement learning was used for 

the neural network to learn driving behavior from naturalistic data. On the one hand this paper 

showcased the application of fuzzy rules on continuous variables with high R-squared values, 

but on the other hand the choice of model parameters and the number of car-following events 

were limited (ten in total). Fuzzy deep learning was also applied for traffic incident detection 

(El Hatri and Boumhidi, 2018), where the authors performed a comparison of machine learning 

models based on MSE with detection rate and mean time to detection as criteria. Their 

implementations showcased a high detection rate, low false alarm rate and a back-propagation 

feature to adjust the parameters in the deep network, although model validation was done on 

highly artificial street network and incident occurrences. The standard deviation of detection 

time was not given, indicating questionable potential for applying this algorithm. 

 

Gaussian Mixture Models 

Gaussian Mixture Models (GMMs) were used to improve the probability density function (PDF) 

by introducing the driver’s unresponsive samples. Zhou et al. (2019) utilized Multivariate 

Gaussian Distributions (MGDs) in order to model driving behavior in critical risk situations as 

well as driver’s evasive manoeuvres before the collision. The maximum likelihood estimation 
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(MLE) method was chosen to estimate the parameters of MGD. The results of the models were 

in accordance with the results in previous studies and a strong influence of risk indicators was 

identified, especially from velocity and TTC. However, the typical sampling rates in EDR might 

cause different sampling accuracy among data samples and the influence of vehicle width and 

small lateral deviation of collision position were not considered.  

 

Random Forests 

Four machine learning algorithms: RF, Deep Neural Network, Multilayer Feedforward Neural 

Network, and t-Distributed Stochastic Neighbor Embedding (t-SNE), were applied to work zone 

events within NDS data (Chang and Edara, 2018). The RF algorithm had the best performance 

in classifying NDS data into crashes, near-crashes, and baseline using pre-event variables. 

The prediction accuracy for work zone events was 97.7% for three classes: crash, near-crash, 

and baseline and 88.7% for two classes: crash and near-crash. These accuracies were 

significantly higher than a Naïve predictor’s accuracies of 62.6% and 74.2%, respectively. The 

high accuracies of RF models indicated that these models can be used to predict the 

occurrence of a safety critical event by only using pre-event variables. However, it should be 

mentioned that RFs tend to produce anomalous response or prediction surfaces. That might 

be a bad feature for the i-DREAMS project, where the algorithm could end up changing states 

often at a boundary because of the categorization of continuous inputs. 

 

Task-Capability Interface Models 

A key use the STZ concept on the Task-Capability Interface model by Ray Fuller (2000) 

regarding driving as a task. The model assumes the driver has limited capabilities (task 

capability) and compares them to the actual effort required for driving (task demand). This 

qualitative model considered attitude, motivation, personality as well as numerous factors 

related to the driver in determining crash risk, by introducing a Task-Capability Interface where 

every positive development has rewarding consequences and every negative event has 

punishing consequences. A quantitative attempt was made by Saifuzzaman et al. (2015), who 

applied a Task-difficulty modification on Gipps' and Intelligent Driver (IDM) car-following 

models, based on driver's satisfaction with current speed. Although they only used trajectory 

data from driving simulator trials, their models could reproduce human factor induced 

collisions, unlike the original Gipps and IDM, and have been found to consistently and notably 

outperform traditional models in both normal and distracted car-following scenarios. An 

advancement of the Task-Capability model regarding data collection was made in Machiani 

and Abbas (2016), who used real-time field measurement of vehicle trajectory data in order to 

assess the level of safety at signalized intersections based on task demand on dilemma zones. 

However, the level of safety at signalized intersections may have been misinterpreted due to 

the lax definition of dilemma zone and the insufficient capture of vehicle trajectories from video.  

 

Clustering Models 

Clustering techniques have been used by researchers to categorize drivers who are compliant 

and non-compliant. Xue et al. (2019) developed a driving style recognition method (safe, low-

risk, high-risk, dangerous) based on vehicle trajectories from video recordings and k-means 

clustering, failing however to take into account road conditions and traffic flow levels. An 

individually-tailored, real-time feedback-reward system for in-vehicle interventions was 

installed in driver’s own vehicles and its effect was researched in a field trial with 37 participants 

by Merrikhpour et al. (2014). Drivers were clustered by compliance rate, pre and post 

interventions, in more speed and headway compliant and less speed and headway compliant 

and the results showed that speed limit and headway compliance increased with post-
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intervention in the non-compliant group. However, it is not clear if the observed benefits were 

due to either feedback, or reward, or the unique combination of both. The study by Wang and 

Xu (2019) using SHRP2 data followed a two-level approach; first, a K-means algorithm was 

adopted to classify drivers into groups of high, moderate or low risk level and second, logistic 

regression models for each risk group indicated the probability of each driver getting involved 

in an incident. Drivers themselves participated in this study by validating any traffic event using 

an in-vehicle event button and by self-assessing their behavior due to inattention and 

inexperience errors. 

 

Hybrid Input Output Automaton 

According to Bouhoute et al. (2014), a Hybrid Input Output Automaton (HIOA) is a formal model 

that used to describe discrete and continuous behavior of a system. A driver-centric approach 

to model risky driving behavior in vehicular ad hoc networks was proposed. Their advantage 

consisted of providing a better analysis of hybrid systems. The constructed automaton 

corresponded to the supposed behavior of the driver in one trip, exploration of other states 

possible in next trips. The goal of the proposed example was to illustrate the idea of the 

modelling approach and how it can be applied. Consequently, despite the constructed model 

may be useful to predict the driver behavior in the future, prevent unsafe situations and provide 

more comfort to the driver, the implementation of the model and the learning process have 

been not implement yet.  

 

Hierarchical Linear Models 

According to Papazikou et al. (2019), Hierarchical Linear Models (HLMs) or multilevel mixed 

effects linear regression models were used to investigate the feasibility of crash risk indicators 

and examine the factors affecting TTC. In particular, naturalistic driving studies (NDS) data 

from the Strategic Highway Research Program 2 (SHRP2) were analyzed in order to look into 

the whole crash sequence, from a normal driving situation until a crash or a near-crash event. 

The model results revealed that longitudinal and lateral acceleration as well as yaw rate can 

be reliable indicators for detecting deviations from normal driving. Moreover, TTC values were 

affected by vehicle type, speed of the ego vehicle, longitudinal acceleration and time within the 

crash sequence. Nevertheless, different crash types and event severity, road geometry and 

traffic conditions were not considered. 

 

Binary Multilevel Logit Models 

Jovanis et al. (2011) used standard binary Multilevel Logit models. Driver attributes included 

permanent characteristics, such as age and years of driving experience and driving style, 

which was intended to convey the level of risk the driver was willing to accept while undertaking 

the driving task. Event attributes included descriptors of the situation as it unfolded during the 

event. Driver attributes, such as impairment and distraction, captured in the few seconds 

around the crash were included as event attributes. Multilevel models revealed that 

heterogeneity was a problem in estimating event-based models because some drivers had 

been involved in multiple events, which needed to be recognized in the model formulation. The 

particular advantage of the multilevel approach was that it used a structure that reflected how 

driver decisions were made: drivers with particular characteristics found themselves in certain 

contexts in which they executed specific driving manoeuvres, which led to certain outcomes. 
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Structural Equation Models 

Structural Equation Models (SEMs) has been widely used for modelling road user behavior 

and safety. The self-reported behavior of car drivers (Dong et al., 2019), motorcyclists 

(Topolšek and Dragan, 2018) or pedestrians (Dinh et al., 2020) are typically modelled in 

relation to other human factors (attitudes, behavior, motivations) or external factors. SEM has 

been used to model other behavioral aspects in the form of latent variables e.g. driving anger 

(Du et al., 2018), speeding behavior (Javid and Al-Hashimi, 2019; Leandro, 2012), or perceived 

risk. Several related studies focus on distraction related factors. For instance, Li et al. (2014) 

considered the perceived risk of distracted driving as a latent variable, and associated it with 

other latent constructs, namely distractibility, self-reported distracted driving behavior and 

personal acceptability of distracted driving, through a questionnaire survey. In Chen and 

Donmez (2016), a latent variable ‘technology related distraction engagement’ was estimated 

on the basis of other latent variables (attitudes, norms or personality) The above mentioned 

studies are focused mainly on analyzing inter-relationships between ethical and psychological 

factors related to safety, and use SEM to mathematically represent existing conceptual 

frameworks such as the theory of planned behavior (TPB) or the Driver Behavior Questionnaire 

(DBQ – and its four constructs namely errors, violations, aggressive violations and lapses); but 

in most cases, they are not targeted to actual traffic risk estimation. 

 

One family of studies uses SEM for macroscopic traffic safety analysis at regional or national 

level. Shah et al. (2018) used a Data Envelopment Analysis (DEA) technique to estimate a 

composite indicator of risk, and then developed a SEM to model (composite) risk in relation to 

a number of additional composite variables/latent constructs namely institutional framework, 

legislation, user and vehicle factors, infrastructure factors, management factors and financial 

impact. Dimitriou et al. (2019) made a cluster analysis to group countries and developed a set 

of SEMs to model global mortality statistics (in terms of mortality rates per population, per 

vehicle fleet etc.) in relation to various socioeconomic constructs such as economy, 

demographics, road network and traffic enforcement characteristics.  

 

At a more microscopic level but within the same purpose, in Elyasi et al. (2018), a macroscopic 

analysis of the relationships between the main crash components i.e. the traffic, the human 

and the road, was carried out through SEM, in which road safety was defined as a latent 

construct measured through daily and hourly crash rates. Najaf et al. (2018) developed a 

composite indicator of traffic safety on the basis of several indicators (mostly different crash 

rates) and associated it with a number of constructs reflecting characteristics of urban areas 

i.e. walkability, connectivity, economic indicators, congestion, infrastructure etc. Another broad 

family of studies focus on the association of driving behavior with crash risk – that being 

conceptualized through various types of latent constructs. In an earlier study (Ma et al., 2010) 

a questionnaire was used to estimate latent variables of the safety attitudes, perceptions and 

behaviors of professional drivers (taxi and bus drivers). A SEM was built to explore 

associations between crash risk and attitudes, perceptions, violations (aggressive or ordinary), 

and safety concerns of drivers; where the likelihood of crash was thereby modelled as a latent 

variable on the basis of self-reported recent and historical crash involvement.  

 

Papantoniou et al. (2019) considered ‘driver error’ as a latent variable which can be observable 

by a set of driving indicators measured in a simulator drive; relevant indicators were for 

instance the hitting of side bars, lane departures and high engine revolutions per minute. 

Subsequently, they developed a SEM to associate driver error with exogenous factors such as 

driver age and gender, road type and experience. The same simulator dataset also used by 
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Papantoniou (2018) in order to develop a SEM on driver performance as a latent variable – in 

this case as well, it was associated with observable driver and road characteristics, as well as 

with different types of distraction (mobile phone use, conversation with passenger). Zhao et al. 

(2019) used a similar approach to model driving performance as a latent variable measured 

by means of driving simulator metrics and developed a SEM associating it with factors of driver 

characteristics, illegal actions and attitudes – these “independent” variables came from a 

combination of simulator and questionnaire metrics. Useche et al. (2019) developed SEM to 

describe relationships between risky behaviors, risk perception, knowledge of traffic norms and 

cycling intensity (all latent constructs on the basis of a structured questionnaire) and the self-

reported cycling crash frequency in the last 5 years. An earlier study of the same authors 

(Useche et al., 2018) focused on the differences of risky cycling behavior as a latent variable 

between male and female cyclists. Constantinou et al. (2011) used a SEM to associate various 

personality factors (sensitivity to reward, disinhibition, impulsiveness, experience, violations) 

with the number of self-reported number of offenses and accident outcomes.  

 

Only one study was found which uses real driving data to model collision risk while driving. 

More specifically, Ding et al. (2019) used a set of on-road experiments to calculate crash risk 

as a latent variable on the basis of two surrogate safety measures (SSM), namely TTC and 

DRAC in car-following situations. Observed driving metrics as well as driver visual perception 

elements were used to build a set of perceptual and environment related constructs and 

develop a SEM of latent crash risk. 

 

4.3.3 Discussion and Recommendations for i-DREAMS 

With regards to safety and risk level, several models and methodologies have been examined. 

Firstly, DBNs were found to be the most effective and extensible in handling massive trajectory 

data, as well as flexible for safety applications in the data aggregation process (Lefèvre et al., 

2012; Shankar et al., 2008; Zhu et al., 2017). The use of the Bayesian formalism allowed to 

take into account uncertainties on the relationships between the variables (Lefèvre et al., 

2012). However, variable selection, assumptions and non highly detailed vehicle-level data 

were found to be some of the shortcomings of this approach (Katrakazas et al., 2019). SVMs 

successfully found some informative driving operation behaviors with high accuracy and 

extracted the effective features from trajectory data enable the driving style recognition (Xue 

et al., 2019; Yokoyama and Toyoda, 2015). It is also important to mention that in the proposed 

method operator's geo-location, weather, road conditions or traffic flow level which influence 

driving style were not taken into consideration. High accuracies of RFs showed that these 

models can be used to predict the occurrence of a safety critical event by only using pre-event 

variables (Chang and Edara, 2018). 

 

In addition, SEM approaches have been widely used for modelling road user behavior and 
safety and allowed for different hypotheses on the structural model/path diagrams for the 
relationships between variables to be systematically tested. This may lead to a robust 
conceptual framework for the analysis. Although SEM was built to explore associations 
between crash risk and attitudes, perceptions, violations and safety concerns of drivers, it 
found to be less pertinent for the purposes of real-time prediction of the STZ events. SEM were 
unlikely to be able to clearly capture the crash development phase over a short time and the 
lack of representing dynamics made SEM of limited potential for real-time estimation. 
Moreover, in MGDs and GMMs, a strong influence of risk indicators was identified, especially 
the velocity and TTC (Zhou et al., 2019). However, the influence of vehicle width and the small 
lateral deviation of collision position were not considered. Test results of Fuzzy logic models 
had shown that the system can perform well compared with human opinions but there was a 
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limitation of day-time operation due to constraints of the image processing algorithm (Imkamon 
et al., 2008). Finally, standard binary Multilevel Logit models and HLMs found less effective 
(Jovanis et al., 2011; Papazikou et al., 2019), while HIOA formal models and their learning 
process considered as an early stage of an introduction work, so the implementation of the 
model is considered as a further work (Bouhoute et al., 2014).  

 

Overall, RFs and other non-parametric and black-box models that chop up continuous 
measures at arbitrary cut points can be very good at prediction, but in a real-time application, 
they may jump back and forth among the three states in a way that is unexpected and not 
user-friendly. The DBNs will have smoother transitions because the state at time t is directly 
informed by the state at time t-1. 

 

4.3.4 Approaches concerned with abnormal driving 

In this section, models and methodologies often used to detect abnormal driving behaviors 

from normal ones in identifying different abnormal types of driving are described. Different 

aspects related to the actual driving situation, driver stress, time schedules, workload or 

frustration can explain why drivers accept higher risks and engage in more risky driving 

behaviors such as speeding, harsh acceleration or deceleration, perform an illegal or 

dangerous overtaking (i.e. abnormal driving). There is an increasing body of recent literature 

aiming at identifying and predict abnormal driving. Techniques such as deep learning, kNN, 

Convolutional Neural Networks (CNNs), Long Short-Term Memory Models and other have 

previously been used to identify episodes of abnormal driving behavior, mostly based on real-

time telematics data. 

 

Definition of abnormal driving 

Prior to diving into the review and discussion of potentially suitable mathematical models, one 

must define clearly the concept of abnormal driving. Although abnormal driving behaviors vary 

with respect to drivers, driver’s appearances under abnormal driving conditions will be different 

from the normal one (Chiou et al., 2016). Additionally, most traffic accidents can be positively 

linked with abnormal driving behavior, which can, in principle, be detected by analysing driving 

data, e.g. time series of vehicle speed, brake pressure, fully depressed or rapidly changing 

and steering angle (Shi et al., 2015). For instance, large vehicle speed and throttle position 

might imply that the driver is in a hurry or careless. A comparison with the models under real 

driving conditions can be made in order to identify that a driver is in a normal or abnormal 

driving situation.  

 

Long Short-Term Memory Models 

Girma et al. (2019) proposed deep learning-based models, called LSTM models, to predict and 

identify drivers based on their individual’s unique driving patterns based on vehicle telematics 

data. Results showed that the proposed model prediction accuracy remained satisfactory and 

outperformed other approaches despite the extent of anomalies induced in the data. Even 

under increasing noise and outliers effect, the proposed approach maintained its accuracy 

above the acceptable value, 88%, while other models’ accuracy fell below 40%. Neural 

network-based models such as LSTM performed better than Fully Connected Neural Network 

(FCNN), Decision Tree (DT) or RF, by avoiding over-fitting on the noise. Bao et al. (2019) 

trained a spatiotemporal convolutional LSTM network to determine a crash risk scale and to 

calibrate a crash risk alarm threshold. Their data comprised large-scale taxi GPS data, 

population data, weather and land use features, and they was used to compare econometric 

and machine learning models. Econometric models performed better than machine-learning 
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models in weekly crash risk prediction tasks, while they exhibit worse results than machine-

learning models in daily crash risk prediction tasks. However, because taxi trips were not 

representative of the general mobility patterns in a city, this study entails a significant sample 

bias problem.  

 

Hidden Markov Models 

It is worth mentioning that in several studies, Hidden Markov Models (HMMs) were proposed 

to monitor and effectively detect normal and abnormal driving behavior and have demonstrated 

success at predicting time-sequential data and found to generate high accuracies in driver 

state prediction (Lee et al., 2018). Furthermore, Kanaan et al. (2019) used HMMs built on a 

naturalistic driving data, in particular, the Naturalistic Engagement in Secondary Task (NEST) 

dataset, in order to identify abnormal driver behavior and detect distraction. GPS speed and 

steering wheel position were analyzed to classify the existence of off-path glances and 

secondary task engagement, while lateral and longitudinal acceleration were used to estimate 

motor control difficulty associated with the driving environment. The results evidenced a high 

accuracy of 77% in detecting secondary task engagement and long off-path glances and an 

accuracy of 60% for the evaluation of motor control difficulty. HMM and a deep learning model 

such as Single Shot Multibox Detector (SSD) were used in order to select information that 

cause driver distraction and a high detection accuracy of braking operation was confirmed 

(Hashimoto et al., 2019). 

 

Additionally, Zhang et al. (2014) used HMMs to model individual characteristics of driving 

behavior based on accelerator and steering wheel angle data and managed to reach a 

maximum prediction accuracy of 85%. Studies suggest that the model works very well in 

practice for several important applications and is well suited to model the variation in the driving 

signals across drivers. The work by Zhang et al. (2014) proved that individual difference are a 

factor which cannot be ignored in driving behavior model and that HMM can be effective in 

modelling it. Furthermore, HMMs for driver behavior near intersections was trained using 

Genetic Algorithm combined with Baum-Welch Algorithm based on the hybrid-state system 

(HSS) framework (Amsalu and Homaifar, 2016). The models were tested using naturalistic 

driving data and the proposed framework improved the HMM accuracy in estimating the 

driver's intention when approaching an intersection by over 10% higher accuracy. The 

accuracy of the HMM-GA model was better that the HMM model trained with Baum-Welch and 

as a result, HMM-GA model gave the best recognition performance over the HMM model. Abe 

et al. (2007) found that driver’s “hasty state” had effect on Auto-Regressive Hidden Markov 

Model (AR-HMM) model parameters such as gas pedal stroke and brake pedal stroke, and 

also on autonomic nervous and abnormal activity. 

 

Random Forests 

McDonald et al. (2019) analyzed a set of driver behavioral and physiological features in order 

to detect abnormal driving using seven different advanced machine learning approaches, on 

model prediction performance. Results showed that RF algorithms, trained using only driving 

behavior measures and excluding driver physiological data, displayed the highest accuracy in 

classifying driver distraction. In addition, a combination of RF and SVM with a linear kernel 

function algorithm has also revealed high accuracy levels. 

  



D3.2 Toolbox of recommended data collection tools and monitoring methods and a conceptual definition of the 
Safety Tolerance Zone 

©i-DREAMS, 2020  Page 74 of 117 

Gaussian Mixture Models 

The work by Angkititrakul et al. (2011) is noteworthy for developing a stochastic driver-behavior 

model based on Gaussian Mixture Models (GMMs). The proposed model can characterize 

individual driver better than universal models in both short-term and long-term predictions by 

using the observed driving data. Nevertheless, there were identified some disadvantages with 

the proposed model, while mass data should be collected and processed in-time in order to 

establish individual driver models more accurately. A comparison between the GMM and 

PWARX-based driver models, the GMM-based modelling revealed a good performance using 

the actually observed parameters, however, it was more sensitive to the approximation errors 

of the input parameters as in the recursive prediction. As for PWARX-based modelling, 

although not showing advantage at the short-term prediction, it performed better than the 

universal GMM-based model at the long-term prediction. Wang et al. (2018) developed a 

personalized driver model, including a Bounded Generalized Gaussian Mixture Model 

(BGGMM) to capture the driving characteristics of non-Gaussian and bounded support while 

an HMM was employed to describe the dynamic processes of driving tasks. Experimental 

results of modelling car-following behaviors demonstrated that the proposed BGGMM-HMM 

achieved the best performance in accuracy and robustness to handle data with non-Gaussian 

distribution bounded support, compared to traditional GMM-based models, but at the expense 

of severe computation overheads given its  structural complexity. 

 

Bivariate extreme value models 

Bivariate extreme value models have been used to integrate surrogate safety measures (SSM) 

in predicting the number of crashes in urban context. In their first attempt to train a bivariate 

threshold excess model for crash identification on freeway entrance merging areas, Zheng et 

al. (2018) used road geometries, video recordings, and crash records to estimate the severity 

of events based on post encroachment time (PET) and length proportion of merging (LPM). 

Their uncertainty on the chosen combination of safety surrogate measures resulted in a second 

research attempt on the same issue, which calibrated the aforementioned bivariate extreme 

value model this time near signalized intersections, encompassing different traffic conflict 

indicators i.e. TTC, Modified Time-to-Collision (MTTC), PET, and DRAC. This new research 

cleared the uncertainty on the combination of SSM, but relied again on very limited crash data, 

reasonably enough, as actual crashes are rare events. 

 

Discrete Choice Models 

Chu et al. (2017) used Discrete Choice Models (DCMs) to model manoeuvres and gap-

acceptance at urban expressway in merging traffic streams considering safety, road geometry, 

and traffic conditions, based on video trajectory observations. Gap acceptance of MVs on 

expressways was evaluated offline and driving behavior was evaluated based on the risk level 

(relative distance, time to collision) to identify the TTC thresholds for MVs to accept or reject a 

gap. The study concluded that latent choice models outperforms the multinomial and nested 

logit models, with geometry and traffic conditions as significant. Models used included a 

multinomial logit model (MNL), a nested logit model (NL), and a latent choice set model (LCS) 

to indicate the TTC thresholds for a merging vehicle (MV) to reject or accept a gap. The LCS 

model allowed exploration of the latent choice made by MVs; a limitation could be the 

assumption of decision point for merging behavior, which might have influenced when the 

interaction between merging vehicles began and, as a consequence, the TTC indicator. A 

review of Dynamic Discrete Choice Models (DDCM) can be found in Cirillo and Xu (2011) who 

described applications of DDCMs on market research and then compared the dynamic models 

based on short- to medium-term vehicle-holding decisions. According to the authors DDCMs 
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can represent dynamically many decisions in travel behavior and incorporate temporal effects 

in transportation models, although their disadvantages are massive data requirements and the 

relative computational complexity in their application. 

 

Wali et al. (2019) used DCMs to relate crash propensity to unintentional driving volatility and 

other factors. In their study, driving volatility was characterized (intentional vs. unintentional) in 

relation to driving decisions in both longitudinal and lateral directions and its 

fluctuations/variation across drivers involved in normal driving, crash, and/or near-crash 

events; volatility indices, as leading indicators of near-crash and crash events, were linked with 

safety critical events, crash propensity, and other event specific explanatory variables. In 

addition, Koutsopoulos and Farah (2012) used latent class models for car-following data on a 

highway including as input variables vehicle position, lane, speed, acceleration and 

deceleration. The latent class models included a mixture of acceleration, deceleration, do-

nothing: estimate desired speed to preceding vehicle (offline), using Maximum Likelihood 

Estimation, leading to better than superior to those of traditional car-following models. Cirillo 

and Xu (2011) reviewed the application of DDCMs on short-to medium term vehicle-holding 

decisions and presented applications of such models on market research. DDCM were found 

to represent many dynamic decisions (changing over time) in travel behavior. Moreover, 

Aguirregabiria and Mira (2010) proposed methods for the estimation of dynamic discrete 

choice structural models; considering single-agent models, competitive equilibrium models and 

dynamic games. Authors also provided programming codes for estimation models.  

 

Wang and Xu (2019) used DCM for prediction and factor identification for crash severity, and 

compare MNLs with RF which predicts better but the observed differences are not dramatic; 

yet RF can automatically capture the non-linear effects of continuous variables and reduce the 

influence of collinearity relationships existing among explanatory variables. It should be 

mentioned that the models presented above are all static, whereas in i-DREAMS the safety 

monitoring environment is highly dynamic and changing in real-time. There is therefore a need 

for a dynamic problem formulation: DDCMs are thereby considered. 

 

Car-following models 

Traditional car-following models have been the interest of many researchers, who aimed at 

improving the classical algorithm to increase its accuracy. Sangster et al. (2013) proposed an 

optimization algorithm using filtered, smoothed and discretized time-based vehicle trajectories, 

to calibrate a new car-following model; proving more accurate than the classical IDM. In their 

study, however, a significant difference was found between the original and the filtered data. 

Koutsopoulos and Farah (2012) developed a latent class-like DCM using a compensatory 

frequency database (10 Hz),,, to create a desired mixture of acceleration, deceleration or do-

nothing. The resulting model outperformed traditional car-following models. An important 

drawback of the study concerned the lack of consideration of traffic status (free flowing, 

congested etc.), although their framework recognized the potential existence of different traffic 

states.  

 

Discussion and Recommendations for i-DREAMS 

With regards to abnormal driving behavior, several models and methodologies have been 
investigated. LSTMs revealed the highest accuracy, compared with other models examined. 
Specifically, the proposed model maintained its accuracy above the acceptable value 88%, 
while other models’ accuracy fell below 40%. LSTM had an inherent ability to remember 
temporal information in data and conserve it for many time steps, unlike other conventional 
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machine learning approaches (Girma et al., 2019). HMMs were found to generate high 
detection accuracies in driver state prediction and performed very well in practice for several 
important applications (Amsalu and Homaifar, 2016; Hashimoto et al., 2019; Kanaan et al., 
2019; Zhang et al., 2019). The performance could be further improved by including additional 
vehicle-based measures as predictors, using different techniques for creating balanced 
classes in the training datasets (Kanaan et al., 2019). Moreover, the HMMs were limited to 
contextual information representation, based on the hypothesis that the output observations 
were strictly independent and the current state was only related to the previous state. It is worth 
to emphasize that most of the state-of-the-art analysis on driving behavior has been evaluated 
in driving simulator context so it could be useful to test in on-road environment conditions (Abe 
et al., 2007).  

 

An alternative approach to the mathematical modelling of STZ is proposed using DCMs, which 
are commonly used for specifying models for mode choice, travel demand modelling, 
behavioral analysis such as user satisfaction, but have been applied to safety models to a less 
extent. However, DDCM applications found to have econometric problems pertaining to 
household decisions for car ownership, or other problems, where states changed every year 
or months. Furthermore, DDCM might be computationally very expensive and this dynamic 
problem estimation may be challenging and even unfeasible in real-time. Imbalanced data as 
well as the thresholds between different safety levels were some of the examined limitations 
of this approach. Moreover, RFs and SVMs with a linear kernel using driver behavior input 
were some of the highest performing algorithms for accurately classifying driver behavior and 
distraction, multiclass classifier with cognitive and visual secondary tasks (McDonald et al., 
2019). It should be noted that data wasn't in realistic but in a simulator-based scenario, hence 
generalizing these findings beyond the task or environment should be assessed cautiously. 
Additionally, kNNs were affected by unbalanced training data, which resulted in higher time 
complexity when calculating the distance from the unknown sample to all known samples. 
Lastly, BGGMMs with HMMs achieved the best performance in accuracy and robustness to 
handle data with non-Gaussian and bounded support, compared to the traditional GMM-based 
models but at the expense of a substantially increased due to its structural complexity (Wang 
et al., 2018). 

 

Table 13 summarizes the models used by each of the proposed approaches to measure driving 
behavior and crash risk and detect abnormal driving, with the positive and the negative aspects 
of each methodology. Also, a summary of previous work on driver behavior detection with the 
research goal and modelling techniques can be found in Table 17, as shown in Annex A. 
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Table 13: Summary of driving behavior models with positive and negative aspects 

Models Positive Negative 

Dynamic Bayesian Networks (DBNs) 
(Shankar et al., 2008, Lefèvre et al., 2012; Zu et al., 2017; Katrakazas et 

al., 2019) 

 effective in handling massive trajectory data, flexible in 
the data aggregation process, identification of dangerous 
road users, act as a safety net for all the motion planning 

levels, take into account uncertainties on the 
relationships between the variables, parameter 

uncertainty, sample specificity, and extensibility to large 
data sets, capture driver differences over time and space, 

investigation of individual (driver-level) parameters 
themselves as random effects 

the contextual indicators can be more comprehensive and include more 
variables beyond current roadway type, relative speed and traffic speed, 

extracted probabilities for all the scenarios are not high enough, the 
scenarios were built on some assumptions and without highly detailed 

vehicle-level data, information about drivers’ actions such as steering angle 
and pedal pressure are not taken into account, non-automated storage of 

data through the DAS with a flag for potential risk 

Hidden Markov Models (HMMs)  
(Zheng et al., 2014; Amsalu and Homaifar, 2016; Lee et al., 2018; 

Kanaan et al., 2019; Hashimoto et al., 2019) 

 high accuracy in driver state prediction, accurate results 
with a performance comparable to human observer, 
HMM work very well in practice for several important 

applications, the variations in the driving signals across 
the drivers can be modelled 

limited to contextual information representation, based on the hypothesis 
that the output observations were strictly independent and the current state 
was only related to the previous state, the performance of the models can 

be improved by including additional vehicle- based measures as 
predictors, using different techniques for creating balanced classes in the 
training datasets, different driving scenarios of interest can include lane 

change, lack of sensitivity on parameter variation that arise due to noise in 
the training observations, the simulator had not a perfect biofidelity, the 

brake imitated real operation poorly 

Auto-Regressive Hidden Markov Models (AR-
HMMs  

(Abe et al., 2007) 

driver’s hasty state has effect on AR-HMM model 
parameters such as gas pedal stroke and brake pedal 

stroke, and also on autonomic nervous activity 

an experiment could be closer to real hasty situation, individualization 
difficulty, problems with setting thresh for hastiness, states on driving 

behavior were found in driving simulator so it must be tested if the same 
phenomena can be seen in real driving for practical use 

K-means  
(Van Ly et al., 2013; Xue et al., 2019) 

extract the effective features from trajectory data to 
facilitate the driving style recognition 

road conditions and traffic flow level are not taken into consideration  

K-Nearest Neighbor (kNN) 
(Van Ly et al., 2013; McDonald et al., 2019) 

 simple, easy to understand, versatile and one of the top 
most machine learning algorithms that find its 

applications in a variety of fields 

unbalanced training data, which resulted in higher time complexity when 
calculating the distance from the unknown sample to all known samples 
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Models Positive Negative 

Structural Equation Models (SEMs) 
(Ma et al., 2010, Constantinou et al., 2011, Shah et al., 

2018, Papantoniou, 2018, Elyasi et al., 2018, Useche et al., 
2018, Najaf et al., 2018, Dimitriou et al., 2019, Zhao et al., 
2019, Papantoniou et al., 2019, Usechea et al., 2019, Ding 

et al., 2019) 

different hypotheses on the structural model / path 
diagrams can be tested, allows for different hypotheses 

for the relationships between variables to be 
systematically tested, exploratory factor analysis may 

shed light on the number and type of latent variables that 
can be extracted by the available indicators 

less pertinent for the purposes of real-time prediction, developed on 
aggregated data, unlikely to be able to clearly capture the crash 

development phase over a short time, lack of representing dynamics 
makes SEM of limited potential for real-time estimation 

Discrete Choice Models (DCMs) 
(Aguirregabiria et al., 2010, Cirillo and Xu, 2011, 

Koustopoulos et al., 2012, Chu et al., 2017, Wali et al., 
2019, Wang et al., 2019) 

cluster the driving events, classify a new driving event, 
predict the next safety state, calculate the safety level 
utility, predict the probability of being in a certain level 

imbalanced data, econometric problems pertaining to household decisions 
for car ownership, very expensive, not feasible real-time 

Support Vector Machines (SVMs) 
(Yokoyama and Toyoda, 2015; Xue et al., 2019) 

high accuracy, extract the effective features from 
trajectory data to facilitate the driving style recognition, 

the highest performing algorithms for accurately 
classifying driver behavior and distraction, multiclass 
classifier with cognitive and visual secondary tasks, 

examination of a large scale log of vehicle data recorder, 
this method successfully finds some informative driving 

operation behaviors 

road conditions and traffic flow level which influence driving style are not 
taken into consideration, the frequencies at rare bins are small and the 

operation will not occur in short term, daily review of vehicle recorder data 
may not have the ability to distinguish an abnormal and unsafe behavior, 

geo-location of the operation or weather were not taken into account 

Gaussian Mixture Models (GMMs) 
(Angkititrakul et al., 2011; Wang et al., 2018; Zhou et al., 2019) 

strong influence of risk indicators, especially the velocity 
and TTC, best performance in accuracy and robustness 
to handle data with non-Gaussian and bounded support, 

model adaptation in both short-term and long- term 
predictions over the universal (unadapted) models 

different sampling accuracy among data samples, the influence of vehicle 
width and small lateral deviation of collision position are not considered, 

substantial computational cost due to its structural complexity, mass data 
must be collected and processed in-time in order to establish individual 

driver models more accurately 

Naive Bayes (NBs) 
(McDonald et al., 2019) 

high performance and efficient implementation  
sample attributes were independent from each other, lower classification 

performance when the number of sample attributes or the correlation 
between attributes became larger 

Long Short-Term Memory Models (LSTMs)  
(Girma et al., 2019, Bao et al., 2019) 

high accuracy above the acceptable value 88%, LSTM 
has an inherent ability to remember temporal information 
in data and keep it saved for many time steps than the 
other conventional machine learning approaches, the 

proposed model efficiently learns individual unique 
driving patterns from the data to identify the driver 

extent of anomalies and noise- induced in the data 
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Models Positive Negative 

Random Forests (RFs) 
(Chang and Edara, 2018; McDonald et al., 2019) 

high performance for accurately classifying driver 
behavior and distraction, multiclass classifier with 

cognitive and visual secondary tasks, high accuracies of 
Random Forest models show that these models can be 
used to predict the occurrence of a safety critical event 

by only using pre-event variables 

distraction mitigation systems should focus on driver behavior–based 
algorithms that use complex feature generation techniques, cautious about 

generalizing these findings beyond the task or environment explored, 
quality of data received from the sensors, many variables are textual or 

categorical and not numerical, using pre-event data that provide clues into 
the factors leading to their occurrence are not utilized 

Hierarchical Linear Models  
(Papazikou et al., 2019) 

useful in enhancing existing ADAS, more effectively and 
timely detect and stop an early deviation before it 

culminates in a crash 

different crash types, event severity, road geometry and traffic conditions 
are not considered 

Binary Multilevel Logit Models  
(Jovanis et al., 2011) 

driver-level predictors parameterize the effects of event 
attributes and contexts, binary logit model estimates with 
context-only predictors, including the coefficient mean, 

standard error, and odds ratio 

each observation of outcome was treated as independent, non-event 
(baseline) events are not contained but they are costly to obtain 

Fuzzy Logic Models 
(Imkamon et al., 2008, Chong et al., 2013, El Hatri and Boumhidi, 2018) 

the test results show that the system can perform well 
compared with human opinions 

limitation of day-time operation due to constraints of the image processing 
algorithm 

Hybrid Input/Output Automaton Models (HIOAs) 
(Bouhoute et al., 2014) 

better analysis of hybrid system, theory of stochastic 
learning automata was used to define transitions and 

construct the automaton 

the implementation of the model and the learning process are not 
completely implemented yet 

Single Shot Multibox Detector Models (SSDs) 
(Hashimoto et al., 2019) 

high detection accuracy and contributing confidence and 
can be narrowed based on this value 

actual driving behavior and the usefulness are not examined 
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4.3.5 Discussion and Recommendations for i-DREAMS 

A first challenge, within this framework, is the conceptualisation and estimation of the risk 

component. In i-DREAMS risk is defined on the basis of a three-stage STZ, namely Normal 

driving phase, Danger phase and Avoidable accident phase. The time dimension is prominent 

in this concept. With regards to the models and methodologies investigated, it is very important 

to identify the most suitable approach that can model driving behavior, recognize safe or 

dangerous driving and detect abnormal behavior. 

 

It was revealed that DBNs were the most effective and extensible in handling massive 

trajectory data, as well as flexible for safety applications in the data aggregation process 

(Lefèvre et al., 2012; Shankar et al., 2008; Zhu et al., 2017), while variable selection, 

assumptions and non highly detailed vehicle-level data were found to be some of the 

shortcomings of this approach (Katrakazas et al., 2019).  

 

LSTM models had the highest accuracy, with a significant accuracy above the acceptable 
value 88%, compared with other models’ accuracy which was below 40%. LSTM had an 
inherent ability to remember temporal information in data and keep it saved for many time 
steps compared with  other conventional machine learning approaches (Girma et al., 2019, 
Bao et al., 2019).  

 

With regards to an initial SEM concept, it was expected that risk can be considered, at an 
aggregate level, as measurable through the Danger Phase events and the Avoidable Accident 
events. At the same time, changes in values of risk factors (coping capacity related or task 
complexity related) can be associated with increases in risk. An advantage of the SEM 
approach was that it may allow for different hypotheses for the relationships between variables 
to be systematically tested. Exploratory factor analysis may shed light on the number and type 
of latent variables that can be extracted by the available indicators. Subsequently, different 
hypotheses on the structural model/path diagrams can be tested. This may lead to a robust 
conceptual framework for the analysis. At the same time, there is added value for explanatory 
purposes: one of the objectives of i-Dreams is to identify and quantify the significant impacts 
of different human factors on risk and the complex mechanism underlying them. On the other 
hand, SEM found to be less pertinent for the purposes of real-time prediction of the STZ events. 
SEM was developed on aggregated data which, even if available at a fine level of aggregation, 
were unlikely to be able to clearly capture the crash development phase over a short time. The 
lack of representing dynamics made SEM of limited potential for real-time estimation. Data-
driven approaches and dynamic models are more pertinent on that purpose. 

 

Finally, an alternative approach to the mathematical modelling of the STZ was proposed. 
DCMs were found to be a different approach, following the same logic as SEMs. However, this 
method seemed to be less effective as it might be computationally very expensive and even 
not feasible in real-time.  

 

Overall, while SEM and DCM in its standard form may not be suitable for STZ estimation, the 
insights obtained by SEM and DCM in the framework of post-processing analysis may be 
useful for the improvement of the real-time prediction models, and for the general 
understanding of risk mechanisms. A hybrid model incorporating latent variables into real-time 
prediction models might be an optimal approach to modelling risk in i-DREAMS. Lastly, it is 
important to investigate these different approaches in the next sections where both real-time 
and post-trip processing will be examined.  
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4.4 Mathematical modelling 

The literature review in the previous section revealed that four of the modelling approaches 

could be more suitable for modelling the STZ within the i-DREAMS project. In particular, DBNs, 

LSTMs, DDCs and SEMs were the deemed the most appropriate. This section will provide the 

mathematical formulation of the STZ model according to these popular methodologies, in order 

to provide flexibility in the practical implementation of the STZ estimation algorithm. To this 

end, a brief description of each algorithm is presented, followed by an explicit description of 

the proposed models. 

 

4.4.1 Brief description of algorithms 

 

Structural Equation Models (SEMs) 

Structural Equation Models (SEMs) represent a natural extension of a measurement model 

and establish a mature statistical modelling framework. These models are designed to deal 

with several difficult modelling challenges, including cases in which some variables of interest 

to a researcher are unobservable or latent and are measured using one or more exogenous 

variables, endogeneity among variables, and complex underlying social phenomena. SEMs 

are widely used for modelling complex and multi-layered relationships between observed and 

unobserved variables. Observed variables are objectively measurable, whereas unobserved 

variables are latent constructs – analogous to components in a factor/principal component 

analysis. SEMs have two components: a measurement model and a structural model. The 

measurement model is used to determine how well various observable exogenous variables 

can measure (i.e. load on) the latent variables, as well as the related measurement errors. The 

structural model is used to explore how the model variables are inter-related, allowing for both 

direct and indirect relationships to be modelled. In this sense, SEMs differ from ordinary 

regression techniques in which relationships between variables are strictly.  

 

The general formulation of SEM is as follows (Washington et al., 2011): 

η =β ∗η+γ ∗ξ+ε               (1) 

where: 

 η is a vector of endogenous variables 

 ξ is a vector of exogenous variables 

 β and γ are matrices of coefficients to be estimated 

 ε is a vector of regression errors 

 

The measurement models are then as follows (Chen, 2007): 

x = 𝛬𝜒𝑥 ∗ ξ + δ         (2) for the exogenous variables 

   y =Λ𝛬𝛾𝛾 ∗ η + ζ         (3) for the endogenous variables 

where: 

 x and δ are vectors related to the observed exogenous variables and their errors 

 y and ζ are vectors related to the observed endogenous variables and their errors 

 Λx, Λy are structural coefficient matrices for the effects of the latent exogenous and 

endogenous variables on the observed variables 

 

The structural model is often represented by a path analysis, showing how a set of 

‘explanatory’ variables can influence a ‘dependent’ variable. The paths can be drawn in order 
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to reflect whether the explanatory variables are correlated causes, mediated causes, or 

independent causes to the dependent variable.  

 

The structural model concerns on how the model variables are related to one another. SEMs 

allow for direct, indirect, and associative relationships to be explicitly modelled, unlike ordinary 

regression techniques which implicitly model associations. It is the structural component of 

SEMs that enables substantive conclusions to be made about the relationship between latent 

variables, and the mechanisms underlying a process or phenomenon. Because of the ability 

of SEMs to specify complex underlying relationships, SEMs lend themselves to graphical 

representations and these graphical representations have become the standard means for 

presenting and communicating information about SEMs. Similar to factor and principal 

components analyses, SEMs rely on information contained in the variance–covariance matrix. 

Alike other statistical models, SEMs require the specification of relationships between 

observed and unobserved variables. Unobserved variables also include error terms that reflect 

the portion of the latent variable not explained by their observed counterparts. In a SEM, there 

is a risk that the number of model parameters sought exceeds the number of model equations 

needed to solve them. Thus, there is a need to distinguish, with fixed and free parameters 

being set by the analyst and free parameters being estimated from the data. The collection of 

fixed and free parameters specified in the model implies a particular variance-covariance 

structure in the data, which is compared to the observed variance-covariance matrix to assess 

model fit. 

 

Figure 13 shows a graphical representation of two different linear regression models with two 

independent variables, as is often depicted in the SEM nomenclature. The independent 

variables X1 and X2, shown in rectangles, are measured exogenous variables, with direct 

effects on variable Y1, are correlated with each other. The model depicted in the bottom of the 

Figure reflects a fundamentally different relationship among variables. Variables X3 and X4 

directly influence Y2, but variable X4 is also directly influenced by variable X3. The two models 

imply different var-cov matrices. Both models also reveal that although the independent 

variables have direct effects on the dependent variable, they do not fully explain the variability 

in Y, as reflected by the error terms, depicted as ellipses in the Figure 13. The additional error 

term, e3, describes and comprises the portion of variable X4, which cannot by fully explained 

by the effect of variable X3. Latent variables, if added to these models, would also be depicted 

as ellipses in the graphical representation of the SEM. 

 
Figure 13: SEMs depicting standard linear regression model with two variables 
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(Dynamic) Discrete Choice Models  

DDCMs are generalized discrete choice models that model an individual’s choices among a 

set of discrete alternatives that have future implications. These models assume that observed 

choices result from an individual’s maximization of the present value of utility and are known 

as discrete choice models of dynamic programming. Related literature and applications of 

DDCMs have been found in econometrics. One of the first applications of this model was 

proposed by John Rust (1987), for an engine replacement model. Another, more recent, 

example is formulated in Semenova (2018) as an Entry Game with a Long-Lived and a Short-

Lived Player: an example of Apple’s decision to release a new phone. 

Many more examples can be found in econometrics. Cirillo and Xu (2011) give an overview of 

these models for transportation, including short- to medium-term vehicle-holding decisions.   

 

Dynamic single-agent models, can be formulated as follows and as adapted from 

Aguirregabiria (2017). 

 

At each time period t in a given time horizon T, an agent chooses 𝑎𝑡 ∈ 𝐴 =  {0, 1, … , 𝐽} to 

maximize. 
 

𝐸𝑡 (∑ 𝛽𝑇
𝑗=0

𝑆
𝑈 (𝑎𝑡+𝑗, 𝑠𝑡+𝑗))         (4) 

where:  

 𝑠𝑡𝑠𝑡𝑠𝑡 follows a controlled Markovian process with transition f(𝑠𝑡+1|𝑎𝑡, 𝑠𝑡) and is a function 

of observable variables 𝑥𝑡 and unobservable variables 𝜀𝑡; 𝑠𝑡 = (𝑥𝑡 , 𝜀𝑡) 

 𝛽 is the discount factor ∈ (0,1) (which can be assumed as constant for a given state) 

 U is the utility function and depends on both observable and unobservable variables 

 U(𝑎𝑡 , 𝑠𝑡) = U(𝑎𝑡 , 𝑥𝑡, 𝜀𝑡) = 𝜋(𝑎𝑡 , 𝑥𝑡) + 𝜀𝑡(𝑎𝑡) 

 𝐸𝑡  is the present utility value 

 

The problem can be written as a Bellman equation, solved by the value function V(𝑠𝑡)  

 

DBNs 

A Bayesian Network (BN) is a directed acyclic graphical model that can express a joint 

probability distribution of a large set of variables (Sun and Sun, 2015). Usually, BNs are utilized 

for learning causal relationships and hence are ideal for investigating the effect of interventions 

by combining new and prior knowledge data. The core of BNs is the attempt to infer a “hidden” 

state based on a group of available observations. A simple BN structure is exemplified Figure 

14: 
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Figure 14: A BN example 

 

In Figure 14, the arrows depict the causal dependency between the variables, and the nodes 

depict probabilistic layers associated with a probability distribution. 

 

A DBN is an expansion of a BN to model sequential time series data. In a DBN, the hidden 

state in time slice t is represented by a set of 𝑁𝐻 random variables as 𝐻𝑡
(𝑖)

, 𝑖 ∈ {1, … 𝑁𝐻}, each 

of which could be discrete or continuous. Likewise, the observed variables can be represented 

by a group of 𝑁𝑂 random variables as 𝑂𝑡
(𝑗)

, 𝑗 ∈ {1, … 𝑁𝑂}. In state-space DBNs, along with the 

set of hidden and observed layers, a transition model 𝑃(𝐻𝑡|𝐻𝑡−1), an observation model 

𝑃(𝑂𝑡|𝐻𝑡) and the distribution of the initial state 𝑃(𝐻0) need to be defined. With the distributions 

defined, the joint distribution of a DBN can be expressed as: 

𝑃(𝐻0:𝑇 , 𝑂0:𝑇 ) = 𝑃(𝐻0) ∏ 𝑃(𝐻𝑡|𝐻𝑡−1) 𝑃(𝑂𝑡|𝐻𝑡)𝑇
𝑡=1            (5) 

 

An illustration of temporal dependencies on a simple BBN is depicted in Figure 15. 

 

Hidden 
State
(t=1)

Observed 
Variable 1

(t=1)

Observed 
Variable 2

(t=1)

Observed 
Variable 3

(t=1)

Hidden 
State
(t=2)

Observed 
Variable 1

(t=2)

Observed 
Variable 2

(t=2)

Observed 
Variable 3

(t=2)

Time Slice 1 Time Slice 2

 
Figure 15: An example of a DBN (Bold arrows depict causalities in the same time slice while dashed lines depict 

temporal dependencies) 

 

Long Short-Term Memory networks (LSTMs) 

Long Short-Term Memory Models (LSTMs) are a special kind of RNN, capable of learning 

long-term dependencies (Gers et al., 2015). They work tremendously well on a large variety of 

problems, and are now widely used. LSTMs are explicitly designed to avoid the long-term 

dependency problem. Remembering information for long periods of time is practically their 
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default behavior and not something they struggle to learn. All recurrent LSTMs have the form 

of a chain of repeating modules of neural network.  

 

LSTMs use ”memory block” in the hidden unit to capture the long-term dependencies that may 

exist in the data (Girma et al., 2019). This memorizing capability of LSTM has shown the best 

performance across many time-series tasks, such as activity recognition, video captioning, 

language translation. The cell state (memory block) of LSTM has one or more memory cells 

that are regulated by structures called gates, which control the addition of new sequential 

information and the removal of useless ones to and from memory, respectively. Gates are a 

combination of sigmoid activation functions and a dot (scalar) multiplication operation, and they 

are used to control information that passes through the network. An LSTM is often composed 

by three gates, namely forget, input, and output gates, which are schematised in Figure 16. 

 

 
Figure 16: Long-Short Term Memory block graphical representation (Yan, 2016) 

 

An LSTM has three of these gates, to protect and control the cell state: 

 

 Forget gate: Forget gate decides what information to keep or remove from the cell 

state. The first step in LSTM is to decide what information are going to throw away from 

the cell state. This decision is made by a sigmoid layer called the “forget gate layer.” It 

looks at ht−1 and xt, and outputs a number between 0 and 1 for each number in the cell 

state Ct−1. 

𝑓𝑡 = 𝜎(𝑊𝑓 ∗ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)              (6) 

 Input gate: Input gate decides what new information to add and how to update the old 

cell state, Ct-1, to the new cell state Ct for the next memory block. This has two parts. 
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First, a sigmoid layer called the “input gate layer” decides which values we’ll update. 

Next, a tanh layer creates a vector of new candidate values, Ct', that could be added to 

the state. Then the old cell state Ct−1 updates into the new cell state Ct and the old state 

is multiplied by ft.  

𝑖𝑡 = 𝜎(𝑊𝑖[ℎ𝑡−1, 𝑥𝑡] +  𝑏𝑖)                      (7) 

C𝑡′ = 𝑡𝑎𝑛ℎ(𝑊𝑐[ℎ𝑡−1, 𝑥𝑡] +  𝑏𝑐)            (8) 

C𝑡 = 𝑓𝑡 ∗  𝐶𝑡−1 + 𝑖𝑡  ∗ 𝐶𝑡′                      (9) 

 Output gate: Output gate filters out and decides which information to produce as an 

output from a memory block at a given time step t. This output will be based on cell 

state, but will be a filtered version. First, a sigmoid layer, which decides what parts of 

the cell state are going to output, is run. Then, the cell state, used as tanh (to push the 

values to be between −1 and 1) and multiply it by the output of the sigmoid gate, in 

order to take and output the parts needed.  

𝑜𝑡 = 𝜎(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡] +  𝑏𝑜)             (10) 

ℎ𝑡 = 𝑜𝑡 + tanh (𝐶𝑡)                          (11) 

where: 

 Xt and ht: input and output of the memory cell 

 ht-1: input from previous state 

 ft, it, ot: activation function of forget, input and output gates 

 Wf , Wi, WC, Wo: weights of forget, input, candidate and output gates 

 bf , bi, bc, bo: biases of forget, input, candidate and output gates 

 Ct and Ct' candidate cell and updated cell state value 

 

4.4.2 Application to STZ modelling 

 

Structural Equation Models 

According to the i-DREAMS concept of the STZ, ‘risk’ results from the interaction of ‘task 
complexity’ and ‘coping capacity’. However, all three core aspects are unobserved/ latent 
variables, which although not directly measurable may be estimated observed measures, as 
shown in Figure 17. For example:  

 Task Complexity as a latent variable can be measured by metrics and indicators related 
to the road layout (i.e. speed limits, number of lanes, road type), time of day, traffic density 
& composition and weather (i.e. precipitation, visibility).  

 Coping Capacity is also a latent variable, including two distinct aspects, both latent 
variables themselves. Operator State as a latent variable can be estimated based on 
numerous relevant indicators. In fact, there are even operator state aspects that are latent 
variables themselves. For instance: mental state can be inferred on the basis of metrics 
on alertness, attention, emotions, etc., although one may assume "indirect" measurement 
and by so conserve the term measured. Behavior can also be estimated using metrics 
such as speeding, harsh acceleration / braking / cornering, seat belt use, etc. However 
other more comprehensive constructs may be eventually estimated.  

 Risk as a latent variable can be measured by indicators such as Danger phase events and 
Avoidable accident phase events, as detected by the STZ implementation.  

 
 



D3.2 Toolbox of recommended data collection tools and monitoring methods and a conceptual definition of the 
Safety Tolerance Zone 

©i-DREAMS, 2020  Page 87 of 117 

 

 
Figure 17: Path diagram of a SEM approach to i-DREAMS 

In Figure 17, the measurement model uses the processed sensor data (indicators – these are 
shown in boxes) to estimate the various latent variables (these are shown in ellipses). The 
structural model estimates the correlations between factors based on the assumed paths. It 
should be mentioned here, that, as mentioned in Chapter 2, personality traits and driver 
characteristics are going to be solely used for triggering post-trip intervention and not for 
modelling the STZ. These variables are included for that purpose in Figure 17. 

 

In order to estimate this model, two steps may be considered: 

 An exploratory factor/Principal Component Analysis, in which the measurement model will 
be consolidated by means of testing different structures. This will allow on the one hand 
to identify the components of coping capacity and task complexity, for example, is mental 
state a separate component as initially assumed? Are there specific risk factors, e.g. 
distraction, fatigue etc., that warrant to be considered as separate components. On the 
other hand, the indicators with strongest loading for each component can be identified. 

 A confirmatory analysis in the form of SEM, in which the structural model may reveal the 
relationships and interactions between coping capacity (as a whole or through its separate 
components) and task complexity, and their eventual impact on risk. 

 
Dynamic Discrete Choice Models (DDCMs) 
Before developing such models, preliminary steps may include clustering driving observations, 

and then training a transition process (Markov process) to enable the prediction subsequent 

events based on a current driving event (safety level), the next one. To summarize, this 

approach could follow the steps presented in Figure 18, as done in Antoniou et al. (2013) for 

dynamic data-driven local traffic state estimation and prediction. Steps a to c, described below, 

convey the offline training of the model, while steps d to f serve to predict the probability of a 

new observation (driving event) being in a safety zone. The steps are detailed as follows. 

 

Model training: 

a. Clustering driving events (observations) into three clusters as postulated in the STZ, 

into: Normal driving, Danger and Avoidable Accident phase. Many algorithms can be 

compared including Model-Based Clustering as used by Antoniou et al. (2013), neural 

networks, and Random Forests as in Wang and Xu (2019). An interesting approach 

would also be to test the ideal number of clusters and compare with what is postulated 

in the STZ. 
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b. Estimate the transition process: train a Markov process to predict the next state based 

on the last few states 

c. Estimate the STZ model with one utility per cluster for an ordered model with one utility 

(one utility for an ordered model, with the estimation of cut-off values or thresholds 

between different levels)  

Model prediction: 

d. Classify a new driving event 

e. Predict the next safety state 

f. Calculate the safety level utility 

g. Predict the probability of being in a certain level 

 

 

 

Figure 18: Data-driven approach methodology, adapted from Antoniou et al. (2013) 

While steps a and c have been done previously by Antoniou et al. (2013), the model formulation 

for i-DREAMS is different. A detailed methodology for the utility estimation or the model 

formulation is therefore given. 

Step c: model estimation 

 The essence of the proposed DDCM approach has different fundamental aspects, in 

addition to discrete choice model properties. 

 Discrete responses 

 Latent variable model: aiming at identifying different driver types/driving styles or 

aggressiveness indices: which can be ordered 

 Dynamic: continuous driving data 
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 The safety levels are potentially an ordered logistic model: from normal, to dangerous 

(avoidable), dangerous (unavoidable) 

 

The ordered model could also be nested with two nests: Normal and Abnormal driving nest 

(avoidable accident, unavoidable accident). 

 

The dependent variable or output in this model are the different driving behaviors/safety zones 

as Normal, Dangerous and Avoidable accident, which are potentially ordered (or not: 

multinomial logit) and are a function of the dynamically changing states of the vehicle (vehicle 

parameters), the road conditions (environment parameters), the driver/physiological (driver 

parameters), and the static variables (not changing over time or very slowly changing, such as 

driver demographics and/or attitudes obtained from the questionnaire; which are not really 

static but slowly changing, especially when compared to the time frame/duration of a single 

journey). 

 

The overall safety level is defined as “normal” in the sense that the “objective” risk 

factors/safety-critical events, and the driver’s own perception lead to a situation in which there 

is no meaningful risk of the driver engaging in an incident in the following time step. 

 

The methodology for this model (Step c) can be further divided in two sub-steps: a first one 

concerning the estimation of a static model for the safety tolerance zone, and a second one 

going to a dynamic model. 

 

Estimation of a static model, for a given period 

As previously mentioned, the procedure starts by estimating a multinomial model and then 

explores an ordered model. A later step could consider an integrated choice and latent variable 

model, as in Ben-Akiva et al. (2002). In the below formulation, a generalized utility equation is 

given, which can be substituted by different utilities for each alternative or one for the ordered 

model considering a formulation of the threshold calculations. 

 

Assuming one latent variable for one agent (driver) n and for alternative i, the structural 

equations are as follow: 

𝑈𝑛𝑖𝑈𝑛 = 𝑋𝑛𝑖𝜷𝟏𝑋𝑛𝛽2 + 𝑍𝑛𝑖
∗ 𝜷𝒍𝑍𝑛

∗ 𝛽𝑙 + 𝜀𝑛𝑖𝜀𝑛 ;  𝜀𝑛𝑖𝜀𝑛 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐     (12) 

𝑍𝑛𝑖
∗ = 𝑌𝑋𝑛𝑖𝝀𝒍𝑍𝑛

∗ = 𝑋𝑛𝜆𝑙 + 𝜔𝑛𝑖𝜔𝑙 ; 𝜔𝑛𝑖𝜔𝑙~ 𝑁(0, ∑ Ω)                 (13) 

where: 

 𝑈𝑛𝑖𝑈𝑛 is the utility for agent n for alternative i, 𝑋𝑛𝑖 and 𝑌𝑛𝑖 are subsets of the explanatory 

variable 𝑋𝑛, 𝛽2 is the coefficient of the explanatory variables, 𝜷𝟏𝟐 is the coefficient vector 

(to estimate) of the explanatory variables of the utility, 𝑍𝑛𝑖
∗ 𝑍𝑛

∗  is the vector of latent 

variable(s), 𝜷𝒍 is the coefficient vector (to estimate) of the latent variables and 𝜀𝑛𝑖𝜀𝑛 the 

error term of the utility, assumed to follow a standard logistic regression  

 𝝀𝒍 is the explanatory variable, 𝜆𝑙 is the coefficient vector (to estimate) of the explanatory 

variable in the modelling of the latent part, and 𝜔𝑛𝑖𝑙𝜔𝑛𝑖𝜔𝑙 are the error terms, assumed to 

be normally distributed 

 

In addition, the latent variable may be able to explain some indicators 𝐼𝑛𝑖 given from 

questionnaires on attitudes and perceptions. The resulting measurement model equation is: 

𝐼𝑛𝑖𝐼𝑛 = 𝑍𝑛𝑖
∗ 𝜶𝑍𝑛

∗ 𝛼 + 𝛿𝑛𝑖𝛿𝑛          (14) 

where: 

 𝜶 is the coefficient vector (to estimate) for the measurement equations and 𝛿𝑛𝑖 is the 

error component, which is assumed to follow a normal distribution 
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For Within the context of i-DREAMS, a hypothesis is made that the utility of the Safety 

Tolerance Zone includes a latent variable indicating the driving style or the aggressiveness 

index,, which can be ordered. The above equations become: 

𝑈𝑠𝑎𝑓𝑒𝑡𝑦 = 𝑋𝑛𝑖𝜷𝟏𝟐𝑋𝑛𝛽2 + 𝑍𝑛𝑖
∗ 𝜷𝒍𝑍𝑛

∗ 𝛽𝑙 + 𝜀𝑛𝑖𝜀𝑛           (15) 

𝑍𝑛𝑖
∗ = 𝐷𝑟𝑖𝑣𝑖𝑛𝑔 𝑎𝑔𝑔𝑟𝑒𝑠𝑠𝑖𝑣𝑒𝑛𝑒𝑠𝑠𝑛𝑖

∗ = 𝑋𝑛𝑖𝝀𝒍 + 𝜔𝑛𝑖      (16)    

 𝑍𝑛
∗ = 𝐷𝑟𝑖𝑣𝑖𝑛𝑔 𝑎𝑔𝑔𝑟𝑒𝑠𝑠𝑖𝑣𝑒𝑛𝑒𝑠𝑠𝑛

∗ = 𝑋𝑛𝜆𝑙 + 𝜔𝑛𝑙       (16) 

Notes:  

a-  Alternative candidate for the latent variable could include driving risk or risk perception. 

This could also be “abnormal driving”. However, a question arises: can a particular 

subject “normal driving” style be by default a rather risky or dangerous behavior; 

therefore the “abnormal” driving would actually be similar to another person’s “normal” 

driving? 

b- Additionally, the latent variable for driver aggressiveness, could be generalized to 

driving behavior.  

 

The full path diagram for the latent variable model is given in Figure 19: 

 
 

Figure 19: Full path diagram of hybrid choice and latent variable model of Safety Tolerance Zone 

Estimation of a dynamic model, for a given period 

Building from the static discrete choice model, an interest in modelling DCM dynamically 

arises, as many of the variables depicted in Figure 19: are indeed dynamic. 

 

Question of interest: can the aggressiveness indicator or other driving style latent variable be 

considered static i.e. having enough driving data; it would be easy to estimate it, and it doesn’t 

subsequently change over time? Factors influencing the latent variable are likely to remain 

static; however this needs to be tested, and they are not restricted to socio-demographics, as 

could be suggested by the Full Path Diagram. 

 

It is useful to break Equation 15 into the following structure, as the explanatory variables 

assumed to be a function of dynamic (𝛾𝑛𝑡) and static parameters (𝜇) : 

𝑋𝑛 = 𝑓(𝑡) = 𝛾𝑛𝑡𝛾𝑛𝑡𝛾𝑛𝑡 + 𝜇          (17) 
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The following hypothesis can then be tested. As the coefficient related to the static variable 

needs to be estimated only once, the model formulation becomes simplified: 

 

𝑈𝑠𝑎𝑓𝑒𝑡𝑦,   𝑡 = (𝛾𝑛𝑡 + 𝜇)𝛽 + 𝑍𝑛
∗ 𝛽𝑙 + 𝜀𝑛 = 𝛾𝑛𝑡 𝛽𝛾 + 𝜇𝛽𝜇 + 𝑍𝑛

∗ 𝛽𝑙 + 𝜀𝑛   (18) 

 

Based on the same assumption that the latent variable is only explained by static variables: 

Firstly, a static model is estimated in order to solve for the latent variable (by taking enough 

observations over time), as are the static explanatory variables coefficients. The equation 

above can then be reformulated into a dynamic discrete choice model with the following utility 

for each safety level at each time t: 

 

𝑈𝑠𝑎𝑓𝑒𝑡𝑦,   𝑡 = 𝛾𝑛𝑡 𝛽𝛾 + 𝜇𝛽𝜇 + 𝑍𝑛
∗ 𝛽𝑙 + 𝜀𝑛                      (19) 

𝑍𝑛
∗ = 𝐷𝑟𝑖𝑣𝑖𝑛𝑔 𝑎𝑔𝑔𝑟𝑒𝑠𝑠𝑖𝑣𝑒𝑛𝑒𝑠𝑠𝑛

∗ = 𝑋𝑛𝜆𝑙𝜆𝑙 + 𝜔𝑛       (20) 

 

where: 

 𝛽𝛾 is the coefficient to estimate for dynamic parameters at every time step. Hence, for this 

particular case, the new dynamic choice model would consist of only solving 𝛽𝛾 at every 

time step. 

 

Note, however, that the above consists of only looking at agent/driver n. By considering all 

agents/drivers: the problem is reformulated to a maximization problem integrating over all 

agents. 

 

The optimization problem can be written as a Bellman equation and follows a Markov decision 

process. This is to be further explored in the later stages, as it is uncertain whether the i-

Dreams can be solved using DDCMs. Moreover, it depends on the choice: estimate the 

problem or solve it, in addition to the choice of the time-period and time steps. The choice of 

time-steps is a relevant challenge for any method. 

 

For estimation, commonly employed methods to estimate structural parameters are Maximum 

Likelihood Estimation and method of simulated moments. 

 

On its turn, examples of full-solutions methods include nested fixed point (NFXP) algorithm by 

John Rust (1987) and the mathematical programming with equilibrium constraints (MPEC) by 

Kenneth et al. (2012). 

 

Non-solution methods estimate structural parameters without fully solving the backwards 

recursion problem for each parameter. This, in turn, requires additional assumptions although 

being often realistic. However, the dynamic problem estimation may be challenging or even 

unfeasible real-time. The proposal by Hotz and Miller (1993) is therefore an exploration of this 

method, based on conditional choice probabilities. It should be noted that most DDCM 

applications have been econometric problems pertaining to household decisions for car 

ownership, or other problems, where states changed every year or months. In the case of the 

STZ, time steps vary from seconds to potentially milliseconds.  
 

DBNs 

In order to “sketch” the outline of the DBN model, all the necessary variable layers need to be 

a priori. In the i-DREAMS proposal, risk was defined as the outcome of the interaction between 

task demand and coping capacity, whereas both of the variables would be identified through 

https://en.wikipedia.org/wiki/Mathematical_programming_with_equilibrium_constraints
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measurements on the environment, the vehicle and the operator. As a result, four variables 

layers, where each layer includes one or more random variables, should be included in the 

DBN: task demand, coping capacity, indicators of context/operator/vehicle characteristics and 

sensor measurements. Following the principles of Bayesian Programming (Bessiere et al., 

2013), the DBN can be formulated following four steps: 

1. Definition of variables 

2. Proposed joint distribution 

3. Parametric forms, and finally  

4. Risk estimation 

 

Variable/Layer definition 

Before diving into DBN details it is critical to establish the key variable definitions in the context 

of the STZ. 

 

Task Demand: is the state of the world that imposes challenges upon the task of driving, i.e. 

the state in which the driver needs to handle the vehicle sufficiently. What is captured by the 

layer is the probability that the environment imposes significant challenges to the task of driving 

such that an accident might occur, as the variable cannot be directly measured. On the 

environment, task demand is therefore/thereby classified as a hidden variable. 

The variable consists of three states: 

 Low (normal) task demand 

 Increased (dangerous) task demand 

 High (avoidable accident) task demand 

Coping Capacity: is the ability of the driver to address the imposed task demand. It is not only 

driven by cognitive and affective appraisal but also includes other factors such as: 

 Expertise (may be included within cognitive) 

 Physiological (reaction time) 

 Diagnosed or undiagnosed Medical conditions 

 Drug/alcohol ingestion 

 

In other words, coping capacity can be defined as the probability that the vehicle operator is in 

a sufficient state to focus on driving. This is also a hidden variable, i.e. its states will be inferred 

based on the available observations. 

The variable consists of three states: 

 High (normal) coping capacity 

 Decreased (dangerous) coping capacity 

 Low (avoidable accident) coping capacity 

 

Filtered ontext Operator Vehicle (COV) measurements: The variables monitored by the i-

DREAMS platform concerning task demand, driver and vehicle state. These will be used to 

evaluate the “status” of the context-operator-vehicle system, based on which (or part of it) the 

current task demand and coping capacity will be inferred. This is also a hidden variable as it 

will be inferred based on the actually available raw observations. For example, if inattention is 

to be defined as a variable, it cannot be directly measured, but it is going to be inferred from 

suitable physiological indicators. This layer represents the probability of the true “state” of the 

indicators underlying the raw measurements captured by sensors. 
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The layer consists of the variables included in the COV list, as shown in Figure 20:. Some of 

them (e.g. Personality characteristics, socio-demographics) are static/uniform, whereas others 

are dynamic (they change continuously over time), e.g. traffic characteristics, alertness and 

attention. The layer depicts the set of the variables in the COV list, describing the context, 

operator and vehicle “system” at each time instant. 

 

 
Figure 20: The COV Variables 

Sensor observations are the raw measurements from the available technologies with regards 

to the COV indicators, and thus are observed variables. 

 

Τhe relationship between the layers 

In order to define the structure of the DBN, the relationship between the variables needs to be 

defined. Initially, the raw sensor measurements will be observed. By filtering these raw 

measurements, the COV indicators will become available. Hence, the COV indicators rely on 

the raw sensor measurements. Furthermore, the COV indicators will be used in order to 

determine the coping capacity of the operator and the task demand at each time moment. 

Hence, the two layers of coping capacity and task demand depend on the COV indicators. 

Finally, as the operator’s capacity indicates the ability of the driver to operate safely with 

regards to the task imposed, the operator’s capacity depends on the demand of the task. As a 

result, the relationship between the different probabilistic layers is the one depicted in Figure 

21. 
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demand

 

Figure 21: The relationship between the variables in one time moment 

 

With regards to the time dependencies, it is assumed that the status of each hidden layer (i.e. 

Task Demand, Coping Capacity and Filtered COV measurements) depends on its status in the 

previous time moment. Furthermore, as coping capacity and task demand will be predicted by 

the available COV indicators, it is assumed that the filtered measurements will influence the 

status of task demand and coping capacity in future time steps. As a result, the time 

dependencies are assumed to be similar to Figure 22. 

 

Task 
Demand

Coping 
Capacity

FMSensors

 
Figure 22: The time dependencies between the layers 

 

The proposed DBN structure 

Combining the layer dependencies as these were described in Figures 20 and 21, the 

proposed DBN structure along with the proposed characteristics to estimate task demand and 

coping capacity is the one depicted in Figure 23. 
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Figure 23: The proposed DBN for STZ modelling 

 

The proposed DBN can be described by the joint distribution: 

  𝑃(𝑇𝐷0:𝑇 , 𝐶𝐶0:𝑇 , 𝐹𝑀0:𝑇 , 𝑍0:𝑇)

= 𝑃(𝑇𝐷0, 𝐶𝐶0, 𝐹𝑀0, 𝑍0) ∏ 𝑃(𝑇𝐷𝑡|𝑇𝐷𝑡−1𝐹𝑀𝑡−1) 𝑃(𝐶𝐶𝑡|𝑇𝐷𝑡𝐶𝐶𝑡−1𝐹𝑀𝑡−1) 𝑃(𝐹𝑀𝑡|𝐹𝑀𝑡−1𝑇𝐷𝑡𝐶𝐶𝑡𝐶𝐶𝑡−1)𝑃(𝑍𝑡|𝐹𝑀𝑡) 
  

𝑇

𝑡=1

 

, 𝑡 ∈  ℕ 𝑎𝑛𝑑 𝑡 ≤ 𝑇 (21) 

where: 

 TD: Task Demand 

 CC: Coping Capacity 

 FM: Filtered COV Measurements 

 Z: Raw measurements 

 t: current time step 

 T: Total time of measurements 

 

Parametric forms 

Task Demand: The expected task demand 𝑃(𝑇𝐷𝑡|𝑇𝐷𝑡−1𝐹𝑀𝑡−1) is derived from the previous 

task demand and the available indicators on environment variables. There exists no formula 

to estimate task demand based on the measured variables, but a function that correlates task 

demand with the thresholds (Chapter 4) of available environmental variables (Chapter 2) can 

be used for providing current task demand information modified by a constant to depict the 

relationship between the current and the previous task demand.  

𝑃(𝑇𝐷𝑡|𝑇𝐷𝑡−1𝐹𝑀𝑡−1) = 𝑓(𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡, 𝑉𝑒ℎ𝑖𝑐𝑙𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠, 𝑇𝐷𝑡−1)  (22) 
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Coping Capacity: Τhe current coping capacity 𝑃(𝐶𝐶𝑡|𝑇𝐷𝑡𝐶𝐶𝑡−1𝐹𝑀𝑡−1) can be estimated 

through functions that correlate the effect of task demand on coping capacity (Faure et al., 

2016) modified by a factor to take the previous coping capacity into account. 

𝑃(𝐶𝐶𝑡|𝑇𝐷𝑡𝐶𝐶𝑡−1𝐹𝑀𝑡−1)= 𝑓(𝐷𝑟𝑖𝑣𝑒𝑟, 𝑇𝐷𝑡, 𝐶𝐶𝑡−1)  (23) 

Filtered Measurements: 𝑃(𝐹𝑀𝑡|𝐹𝑀𝑡−1𝑇𝐷𝑡𝐶𝐶𝑡𝐶𝐶𝑡−1) is the probability of the indicator values 

based on the current task demand and coping capacity as well as their previous values and 

the previous coping capacity can be mapped based on the specific scenarios that will be tested 

in the simulators. In that way, specific ranges of values or task demand- and coping capacity-

specific measurements along with their corresponding probabilities of appearance can be 

identified. 

Raw measurements: For the probability of the raw measurements 𝑃(𝑍𝑡|𝐹𝑀𝑡) a sensor model 

based on Agamennoni et al. (2011), and the Student t-distribution can be followed. 

STZ and abnormal driving identification 

In order to assess the STZ levels and abnormal driving situations, a comparison between the 

layers of task demand and coping capacity needs to be defined. In order to identify avoidable 

accident or dangerous STZ levels, the following probability is proposed to be inferred  

𝑃(𝑇𝐷 ≠ 𝑛𝑜𝑟𝑚𝑎𝑙 ∪  𝐶𝐶 ≠ 𝑛𝑜𝑟𝑚𝑎𝑙 |𝑆𝑒𝑛𝑠𝑜𝑟𝑠)   (24) 

The aforementioned probability refers to situations that task demand and coping capacity are 

beyond normal operations (i.e. increased or high task demand with decreased or low coping 

capacity) given the available sensor observations. Examples of the different STZ levels 

according to task demand and coping capacity are highlighted in Table 14: If abnormal driving 

is detected, then the influence of abnormal driving could be added into coping capacity so that 

it is included in STZ calculation. 

 

Table 14: Different STZ levels according to task demand and coping capacity 

Task Demand Coping Capacity STZ Level 

High Low Avoidable Accident  

High  Decreased  Dangerous  

High  High  Normal  

Increased  Low Avoidable Accident  

Increased  Decreased  Dangerous 

Increased  High  Normal 

Low  Low Dangerous 

Low  Decreased  Normal 

Low  High  Normal  

Inference 

As in such mathematical models exact inference is intractable in real-time, a sequential 

importance sampling filter (Lefèvre et al., 2013) can be used.  
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LSTMs 
With regards to LSTMs, the problem of defining the STZ levels becomes more straightforward, 

since LSTMs as a sub-category of Deep Neural Networks act like “black-boxes” (Xu et al., 

2013) and thus the only input that needs to be provided to the model are labelled time series 

data. An illustration of the proposed approach using LSTMs is given in Figure 24. 
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Figure 24: STZ modelling using LSTMs 

In the proposed solution with LSTMs, historical sensor data will be used to extract and select 

features of the measurements to obtain the most important for STZ level detection. Afterwards, 

the most important measurements for monitoring the environment the vehicle and the driver 

become the input to an unsupervised learning algorithm that will group together measurements 

according to task demand and coping capacity, which, in turn, will act as input for training the 

LSTM model. After training the LSTM model with the labelled time-series data, the available 

real-time sensor data will be used as input for the model to predict the STZ level in the 

subsequent time. With regards to abnormal driving detection, collected historical 

measurements from the i-DREAMS technologies may also be used as input for an 

unsupervised learning approach grouping together measurements correlated with normal 

operation of a vehicle and those departing from normal driving behavior. The detection of 

abnormal driving may thereby become a valuable input to the STZ LSTM model. 

4.5 Practical considerations  

 

Practical considerations for implementing driving style recognition and incorporating 

into i-DREAMS platforms 
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There are a few practical considerations that need to be considered while implementing driving 

style recognition notion into the modelling framework, as an input variable.  

Use of driving simulator and data collection period 
As already indicated, recognising profiles of drivers requires extensive data of the pertaining 

to each  driver, so that an algorithm could can be trained to identify a particular driving style. 

The collection of such an extensive dataset is often not possible from in a driving simulator, as 

it is difficult to recruit individuals who can spend hours in a virtual environment. It is, therefore, 

decided suggested that driving style recognition will only be incorporated  included in on-field 

experiments. Additionally, in order to have sufficient dataset for each driver, it is recommended 

that at least 4-weeks of driving data are collected, for proper for driving style recognition. It is 

assumed that within this duration, drivers have made a sufficient amount of trips and have 

experienced a significant of situations, covering most driving scenarios each particular driver 

may find, which may give place to episodes of abnormal driving.  

Experimentation of classification algorithm 
A vast array of clustering algorithms can be found in the literature to be used for studying 

driving style profiles from vehicle and telematics datasets. The literature has reported mixed 

and conflicting results. And, as a result, it is not entirely clear which algorithm works best. 

Therefore, at this point definitive decision cannot be made about the use of a particular 

algorithm. However, some prominent algorithms (such as k-means, KL- divergence, SVM, 

MLP, etc.) will be tested once the dataset becomes available. Key performance indicators may 

be then determined for each algorithm to compare their efficiency in the form of confusion 

matrix along with considerations on its implementation within on-board devices to be used to 

recognize episodes of specific driving style in real-time and by so facilitate real-time 

intervention. A potential compromise between inaccuracies of predicting a sliding time window 

into a wrong driving style class and the feature practical implementation may be required to be 

considered. However, efforts will be made to reduce the extent of this compromise. Finally, 

smoothness of predictions according to measurements should be considered, especially in 

real-time situations. Black-box models (e.g. NNs) usually chop up continuous measures at 

arbitrary cut points and may jump back and forth among the three states of the STZ in a way 

that is unexpected and not user-friendly. DBNs usually have smoother transitions because the 

state at time t is directly informed by the state at time t-1, but this should be further examined 

during the simulator and on-road trials.  

Experimentation and change of risk indicators and their thresholds 
The thresholds values provided in Table 10 convey the understanding from existing literature 

and provide the necessary starting point to develop criteria for distinguishing classes of driving 

styles. However, extensive experiments will be carried out by varying these values (excluding 

indicator variables). It is also important to investigate if the clustering algorithm divides data 

into more than two classes. Additionally, some important risk indicator variables may be given 

an increased weightage within the process to promote the effectiveness of an algorithm. 

Furthermore, because several variables are introduced, it may be necessary to normalise 

these variables before being used in the analysis. 

Usefulness of driving style recognition into post-trip interventions 
During the post-trip intervention phase of the project, the information on driving style episodes 

is of great importance. Along with the feedback on special events, this information can also be 

fed to the drivers and intervention interventions can be set up that aiming at decreasing the 

abnormal driving episodes from driving data. The implementation of driving style recognition 

in the on-board devices will make sure that for each trip this data would also be available for 

post-trip intervention. Post-trip intervention on driving style is a more meaningful intervention 
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compared to an intervention that focuses uniquely around a specific aspect of safety as driving 

style recognition covers a wide range of indicators. 

Data Labelling and specification of specific scenarios for STZ modelling 
As mentioned in Section 4.2, the problem of identifying the STZ levels is a classification one. 

Since classification is a supervised learning problem, in order to train the algorithms data must 

be labelled (i.e. there needs to be a distinction of measurements corresponding to the three 

levels of the STZ). In order to accelerate the procedure of training the model(s), specific risk 

scenarios need to be considered for STZ calibration. These scenarios along with the 

corresponding measurements that are needed, are depicted in Table 15. 

Table 15: List of specific risk scenarios 

Accident 
type 

Contributing 
risk factors / 

behavior 

Support 
system 

Required metrics Availability on-
road 

Availability 
in simulator 

Head-on 
collision 

Lane departure 
 
 
 
 
Risky 
overtaking 

Lane 
departure 
warning 
 
 
 
 
Overtakin
g 
assistant 

Position within lane (in Mobileye 
Research version, not in standard 
version) 
 
Vehicle in blind spot + 
Opposite vehicle speed and location + 
Acceleration potential + 
Posted speed limit 

YES 
 
 
 
 

NO 

YES 
 
 
 
 

YES 

Rear-end 
collision 

Following lead 
vehicle too 
closely 

Headway 
collision 
warning 

Time headway + 
TTC towards lead vehicle + 
Vehicle speed 

YES YES 

Collision 
with 
vulnerable 
road user 

Dangerous 
overtaking 
bicycle or 
moped on 
shared lane 
 
 
Dangerous 
approach of 
zebra crossing 

Bicycle 
overtakin
g 
assistant 
 
 
Pedestria
n 
detection 
warning 

Time headway 
TTC towards bicycle 
Vehicle speed 
 
Vehicle speed 
Pedestrian detection & distance 

NO 
 
 
 

NO 

YES 
 
 
 

YES 

Run off road 
accident 

Driving while 
drowsy 
 
 
 
 
 
Driving while 
distracted 

Lane 
departure 
warning 
 
 
 
 
 
Lane 
departure 
warning 

Position within lane 
(Mobileye Research, not in standard 
version) 
Drowsiness indicator 
(CardioWheel)CardioWheel 
 
Position within lane 
(Mobileye Research) + 
Distraction detected (OSeven app) 

YES 
 
 
 
 

YES 

YES 
 
 
 
 

YES 
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5 Conclusions and next steps 

This deliverable aimed at providing a toolbox of available measurements, thresholds and 

indicators as well as reviewing potential conceptualisations in order to identify and evaluate 

the three different STZ levels. The challenge in providing a list of thresholds for the four modes 

(i.e. car, bus, truck and rail) with regards to the STZ often concerns available measurements 

availability. Although technologies might hinder the evaluation of all the required parameters 

for a holistic driver and environmental monitoring, Chapters 2 and 3, provided a variety of 

measurements and corresponding thresholds to identify dangerous on-road situations. 

 

Summarizing the contents of Chapters 2 and 3, Table 16 presents a list of proposed driver 

monitoring indicators with their available threshold values. 

 

Table 16: List of proposed driver monitoring indicators along with the available threshold values 

(✔: A threshold can be defined but no standard value is indicated by the literature or technology company) 

 Available threshold values 

Proposed measurements Cars Trucks/Buses Rails 

ECG signal ✔ ✔   

drowsiness  ✔ ✔ X?   

Fatigue ✔ ✔ ✔ 

steering wheel angle  ✔   

PPG signal ✔ ✔ X?  

GSR/EDA signal ✔   X?   

Sleepiness 505   ✔ 

distraction (via mobile phone use) ✔ ✔   

interbeat interval ✔    

aggressiveness indicator ✔ ✔   

harsh acceleration / deceleration  0.31g 0.25g   

speed exceedance (based on speed 
limit indicator and vehicle speed) 

10%6 5%5  

speed at turns indication (based on turn 
indication activation) 

5%5 5%5  

RPM ✔ ✔   

time headway (TH) 2.0 sec4 2.5 sec4   

headway level ✔     

pedestrian collision warning (PCW) 2sec ✔   

vehicle ahead detected ✔     

forward collision warning (FCW) 2.7sec ✔   

urban forward collision warning (UFCW) ✔ ✔   

left lane departure warning ✔ ✔   

right lane departure warning ✔ ✔   

low visibility indicator ✔ ✔   

                                                           
5 0-100 level 
6 Per cent over the speed limit plus 2 miles per hour (mph) 
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 Available threshold values 

Proposed measurements Cars Trucks/Buses Rails 

long driving hours  4-6hours 8hours7   

driving during risky hours ✔ ✔   

roadway scene video ✔ ✔   

 

With regards to the mathematical conceptualisation of the STZ both dynamic (i.e. DBNs and 

LSTMs) and static (i.e. SEMs and DCMs) approaches are proposed. DBNs and LSTMs were 

chosen due to their efficiency and flexibility in real-time predictions, whereas SEMs and DCMs 

were chosen as they can enable explanatory analysis on precursors of the STZ levels. 

Although a dynamic DCM can be formulated, real-time efficiency might arise as a problem and 

in that case, DCMs are going to be implemented statically. The reasonre are twos behind the 

suggestion of both dynamic (online) and static (offline) prediction techniques: i) to enable for 

flexibility with regards to the technical implementation of the model and ii) to exploit the 

online/offline characteristics for the activation of real-time/post-trip interventions. For all the 

proposed approaches, a labelled dataset is needed for training and this should be taken into 

consideration for the data collection. 

The outcome of the present deliverable also dictates that the project following work steps 

include: 

 The “translation” of the mathematical models into code, so that they are ready for 

technical implementation. 

 The testing, calibration and enhancement of the mathematical models during the 

simulation and on-road experiments to assure a sufficient and efficient data collection 

as well as timely initiation of the interventions. 

                                                           
7 Recommended 8 hours before breaking for professional truck and bus drivers, for cars it is considered around 4-

6 hours 
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Annex A: Detailed literature review of models and techniques 

Table 17: Summary of models and techniques of related driver behavior systems 

Year Author Input variables  Output variables  Evaluation 
Monitoring driving 

behavior  
Road 

environment  
Utilized model Method Technique  

2019 Katrakazas et al. 
speed, lateral and longitudinal 

position, acceleration, 
heading 

safe or dangerous 
behavior during 

automated driving 
(safe, collision or 

conflict-prone traffic 
conditions)  

real-time   risk level (probability) 
highway, rural, 

urban 
Dynamic Bayesian 

Network (DBN) 

interaction-aware 
motion models, 

collision risk network-
level (CRN), collision 

risk vehicle-level 
(CRV) 

statistical  

2019 Papazikou et al. 

driver factors (age, gender, 
miles driven previous year), 
vehicle kinematics (vehicle 

type, speed, yaw rate, lateral 
and longitudinal acceleration, 

deceleration) and factors 
related to the time within the 

event sequence (system 
timestamp, system timestamp 

squared) 

TTC real-time   risk level (probability) 
highway, rural, 

urban 

Hierarchical Linear 
Model (or 

multilevel mixed 
effects linear 

regression model) 

Strategic Highway 
Research Program 2 

(SHRP2 NDS) method 
statistical  

2019 Xue et al. 

acceleration, relative speed, 
relative distance, Inversed 
Time to Collision (ITTC), 
Time-Headway (THW), 

Modified Margin to Collision 
(MMTC) 

safe, high risk, low 
risk, dangerous 

real-time   risk level (probability) 
highway, rural, 

urban 

K-means algorithm, 
Supporting Vector 
Machine (SVM) 

Discrete Fourier 
Transform (DFT), 
Discrete Wavelet 
Transform (DWT) 

methods (inference) 

machine 
learning  

2019 Zhou et al. 

longitudinal velocity, 
longitudinal deceleration, 

lateral acceleration, yaw rate, 
steering wheel angle and 

service of brake 

TTC real-time  
 risk level (low, 
medium, high) 

highway, rural, 
urban 

Multivariate Gaussian 
Distribution (MGD) 
model, Gaussian 

Mixture Model (GMM) 

maximum likelihood 
estimation (MLE) 

method, Expectation–
maximization (EM) 

algorithm 

statistical  

2019 Girma et al. speed, time  
original, anomalous 

and noisy data 
real-time  

abnormal driving 
(probability) 

city way, parking 
space, motorway 

Long Short-Term 
Memory (LSTM) 

model 

Time series algorithm 
method: Recurrent 
Neural Networks 

(RNNs) 

 machine 
learning   



D3.2 Toolbox of recommended data collection tools and monitoring methods and a conceptual definition of the Safety Tolerance Zone 

©i-DREAMS, 2020  Page 110 of 117 

Year Author Input variables  Output variables  Evaluation 
Monitoring driving 

behavior  
Road 

environment  
Utilized model Method Technique  

2019 Kanaan et al. 
GPS speed, steering wheel 

position, lateral and 
longitudinal acceleration 

long off-path glance, 
secondary task 

engagement and 
motor control difficulty 

real-time  
abnormal driving (low, 

medium, high) 
highway, rural, 

urban 
Hidden Markov Model 

(HMM)  

Baum-Welch 
algorithm uses 

Maximum Likelihood 
Estimation (MLE), 

Naturalistic 
Engagement in 
Secondary Task 
(NEST) dataset 

(inference) 

 machine 
learning   

2019 McDonald et al. 

physiological (breathing rate, 
heart 

rate, and perinasal 
perspiration) and driving 

behavioral (brake force, lane 
offset, speed, and steering 

angle) data 

normal or abnormal 
driving 

simulator 
abnormal driving (low, 

medium, high) 
highway Random Forest (RF) 

Time Series Feature 
Extraction based on 
Scalable Hypothesis 

tests 

 machine 
learning   

2019 Hashimoto et al. 
driver’s vehicle position data, 

appearing 
objects, and brake pedal data 

positive or negative 
data 

simulator 
abnormal driving 

(probability) 
highway, rural, 

urban 

Hidden Markov Model 
(HMM), Single Shot 
Multibox Detector 

(SSD) model  

Likelihood threshold 
method (inference), 

time series clustering 
and probabilistic 

modelling based on 
HMM 

 machine 
learning   

2019 Bao et al. 

crash data, large-scale taxi 
GPS data, road network 

attributes, land use features, 
population data and weather 

data 

crash risk scale, 
spatiotemporal 

analysis of crash risk 
real-time  

risk level (aggregated 
spatiotemporal steps) 

urban 

Spatiotemporal 
convolutional long 
short-term memory 

network. Four 
commonly-used 

econometric models, 
and four state-of-the-
art machine-learning 
models are selected 

Comparison of 
econometric models 

with machine learning 
models based on the 
usual goodness of fit 

measures (MSE, 
MAE, MAPE) 

machine 
learning 
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Year Author Input variables  Output variables  Evaluation 
Monitoring driving 

behavior  
Road 

environment  
Utilized model Method Technique  

as benchmark 
methods  

2019 Wang et al. 

naturalistic car driving data 
from cameras, GPS, 

speedometer, accelerometer 
and radar. Total of 19133 

trips and 162000 km.  

risk groups, estimation 
of the probability of 

each individual being a 
high-risk driver 

offline 

risk level 
(classification; 
calculation of 
probability) 

urban 
K-means clustering, 
Logistic regression 

models 

Strategic Highway 
Research Program 2 

(SHRP2 NDS) 
method; clustering 

and then regression 
analysis based on 

principal components 

statistical  

2019 Zheng et al. 

near signalized intersections, 
vehicle trajectories and 
lengths, crash records 

including information such as 
location, date, time, crash 
type, crash severity, crash 

occurrence, more details on 
the direction of travel of 

incident vehicles, the lane 
incident vehicle occupied, and 
the total number of involved 

vehicles 

number of crashes offline risk level (probability) urban 
Bivariate extreme 

value model  

Bivariate extreme 
value model to 

integrate different 
traffic conflict 

indicators for road 
safety estimation, 

validation with actual 
crash data by four 

traffic conflict 
indicators, TTC, 
MTTC, PET, and 

DRAC 

statistical  

2019 Dimitriou et al.  
economy, demographics, 

road network and 
enforcement characteristics 

global mortality rates 
2010, 2013 

  Rates   SEM Cluster Statistics 

2019 Useche et al.  

risky behaviors, risk 
perception, knowledge of 
traffic norms and cycling 

intensity 

cyclists crash 
frequency 

  Number   SEM   Self-report 

2019 Papantoniou et al.    
driver error in 

simulated driving 
simulator Driver error   SEM     

2019 Zhao et al.  
driver characteristics, illegal 

actions and attitudes 
driver behavior simulator Driver performance   SEM     
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Year Author Input variables  Output variables  Evaluation 
Monitoring driving 

behavior  
Road 

environment  
Utilized model Method Technique  

2019 Ding et al.  
visual perceptual, vehicular, 

and roadway factors 
car following on curves   Crash risk   SEM   SSM 

2018 Wang et al. 

vehicle speed, acceleration, 
throttle opening, braking 

force, engine speed, steering 
angle 

driving maneuvers, 
driving 

preference/styles, 
decisions 

real-time  
abnormal driving 

(probability) 
highway, rural, 

urban 

Bounded Generalized 
Gaussian Mixture 
Model (BGGMM), 

Hidden Markov Model 
(HMM) 

Expectation 
Maximizationmethod 
consisting of E-Step 

and M-Step, log-
likelihood function 

(inference) 

 machine 
learning   

2018 El Hatri et al. 

artificial data on a grid 
network, containing traffic 
information including the 
mean speed of vehicles 

traveling on a lane, the lane 
occupancy rate, the current 

traffic flow and the flow rate at 
previous time intervals, also 
artificially created incidents 

traffic incident 
detection 

real-time  

no monitoring of 
driving behavior, 

rather prediction of 
traffic incidents based 
on the macroscopic 

characteristics of 
traffic flow 

urban 

Fuzzy deep learning 
based traffic incident 
detection, initialized 
through a Stacked 

Auto-Encoder (SAE) 
model 

Comparison of 
machine learning 
models based on 

MSE. Detection rate 
and mean time to 

detection as criteria. 

machine 
learning 

2018 Zheng et al. 
road geometrics, video 

recordings, and crash records 
number of crashes offline risk level (probability) urban motorway 

Bivariate threshold 
excess models with 
different parametric 
distribution functions  

Severity of events 
based on post 

encroachment time 
(PET) and length 

proportion of merging 
(LPM), crashes 

relating to merging 
events on freeway 
entrance merging 

areas 

statistical  

2018 Shah et al.  
institutional framework, 

infrastructure, legislation, 
EMS, user 

modelling risk in Asian 
countries 

  Composite   DEA/SEM   DEA 

2018 Najaf et al.  
walkability, connectivity, 

economic indicators, 
congestion, infrastructure  

safety of urban areas   Composite   SEM   Statistics 
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Year Author Input variables  Output variables  Evaluation 
Monitoring driving 

behavior  
Road 

environment  
Utilized model Method Technique  

2018 Elyasi et al.  human, road, traffic 
relationships between 

crash risk factors 
  Crash risk   SEM   Statistics 

2018 Useche et al.  
Knowledge of rules, cycling 

intensity, risk perception, 
distress 

Risky cycling behavior 
per gender 

  Risky behavior   SEM   Self-report 

2018 Papantoniou   
Driver performance in 
simulated distracted 

driving 
simulator Driver performance   SEM     

2017 Chang and Edara 

inattention, speeding and 
driving under influence, driver 
characteristics, pre-incident 

variables 

crash, near-crash and 
baseline pre-event risk 

real-time   risk level (probability) highway, rural Random Forest (RF)  classification 
machine 
learning  

2017 Zhu et al. 

driver’s emotions, behavior, 
individual driving risk and 
crash frequency, vehicle 

speed, acceleration, braking 
events, vehicle motion, total 

exposure as mileage of travel 

crash or near-crash 
risk 

real-time   risk level (probability) 
freeway, ramp, 

arterial, highway, 
minor road 

Bayesian Network 
Network (DNN) 

Monte Carlo 
Marconian Chain 
(MCMC) method 

(inference), Poisson 
regression process 

statistical  

2017 Chu et al. 

interpolated vehicle trajectory 
observation sets extracted 
from video data, vehicle 
density from detectors 

gap acceptance by 
merging vehicles 
(MVs) on urban 
expressways 

offline 
risk level (relative 
distance, time to 

collision) 
urban motorway 

Discrete choice 
models, including a 

multinomial logit 
model (MNL), a 

nested logit model 
(NL), and a Latent 
Choice Set model 

(LCS) 

Analyses to indicate 
the TTC thresholds for 

an MV to reject or 
accept a gap. 

statistical  

2016 
Amsalu and 

Homaifar 

lateral acceleration, speed, 
yaw rate, steering wheel 

angle, odometer, turn signals 
predicted maneuvers real-time  

abnormal driving 
(probability) 

highway 
Hidden Markov Model 

based on Genetic 
Algorithm (HMM-GA) 

Baum-Welch 
Algorithm, Hybrid-

State System (HSS) 
framework 

 machine 
learning   
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Year Author Input variables  Output variables  Evaluation 
Monitoring driving 

behavior  
Road 

environment  
Utilized model Method Technique  

2016 Machiani et al. 
real-time field measurement 

of vehicle trajectory data 

level of safety at 
signalized 

intersections 
real-time  

risk level (safety 
surrogate histograms) 

urban, 
intersections, 
dilemma zone 

Vehicle speed data 
and their 

corresponding TTC 
values were extracted 
from the time-space 

diagram for each 
vehicle pair 

Level of safety at 
signalized 

intersections 
(inference) 

visual 

2015 
Yokoyama and 

Toyoda 

physical/mental fatigue, 
aggressiveness, acceleration, 

jerk (the derivative of 
acceleration with respect to 

time), yaw velocity 

safe or unsafe 
behavior 

real-time  risk level (probability) 
highway, rural, 

urban 
Support Vector 

Machine (SVM) model 

Gaussian kernel 
function 

(classification), 
entropy-like and KL 
divergence methods 

(purpose) 

 machine 
learning   

2015 
Saifuzzaman et 

al. 

trajectory data from driving 
simulator experiment, human 

factors 

following vehicle 
acceleration and 

spacing 
real-time  

risk level (based on 
driver capability) 

urban, simulator 

Task Difficulty Car-
Following (TDCF) 
model applied on 

Gipps' and Intelligent 
Driver (IDM) car-
following models, 
based on driver's 
satisfaction with 
current speed 

Interaction between 
driving task demand 
and driver capability 

optimisation 

2014 Zhang et al. 

accelerator, deceleration, 
turning uniform motion, 

steering wheel, changing 
lane, overtaking processes 

accelerator and 
steering wheel data  

simulator 
abnormal driving 

(probability) 
highway, rural, 

urban 
 Hidden Markov Model 

(HMM) 

Baum-Welch 
algorithm, Forward-
Backward algorithm 

 machine 
learning   

2014 Bouhoute et al. 

external environment signals 
(traffic signs, collision 

warnings), vehicle 
characteristics and driving 

actions performed (velocity, 
acceleration, deceleration, 
lane used by the vehicle, 

following distance, steering 
angle) 

convenient (safe 
state), tolerable 
(temporarily safe 

state) or risky (unsafe 
state) driving behavior 

real-time  risk level (probability) highway 

Hybrid Input/Output 
Automaton (HIOA) 

formal model, 
Vehicular Ad-hoc 
Network (VANET) 

rectangular hybrid 
automata 

(classification) 

online passive 
learning 

automata 
process 
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Year Author Input variables  Output variables  Evaluation 
Monitoring driving 

behavior  
Road 

environment  
Utilized model Method Technique  

2014 Merrikhpour et al. 

speed limit compliance rate, 
headway time compliance 

rate, age, gender, speed limit 
zones,  

clusters, compliance 
rates pre and post-

intervention 

real-time 
interventions, offline 

evaluation 
risk level 

rural, urban and 
suburban 

  

Pair-wise comparisons 
of concurrent 

noncompliance rate, 
before and after 

interventions 

statistical  

2014 Wu et al. 

Virginia Tech Transportation 
Institute 100-Car Naturalistic 

Driving Study dataset and 
driver-related information 

such as stress, coffee intake, 
sleeping hours etc. 

the number of traffic 
safety events and 

crashes while 
controlling for driver 
characteristics and 

severity level 

offline risk level (probability) 
rural, urban and 

suburban 

Multivariate Poisson 
log-normal model 

(MVPLN)  

association between 
the number of traffic 
safety events and 

crashes while 
controlling for driver 

characteristics; count 
regression models are 

suitable  

statistical  

2013 Sangster et al. 

car-following events recorded 
across  eight drivers, latitude, 
longitude, horizontal speed, 

distance to preceding vehicle 

speed of car-following 
vehicle 

offline 
continuous collection 
of car-following data 

highway 

Car-following models 
with parameter 

calibration 
(optimisation) based 

on RMSE 

Optimisation based on 
RMSE, filtering and 
smoothing vehicle 

trajectories, 
discretisation of 

trajectories based on 
time, analytical car-

following models 

statistical  

2013 Chong et al. naturalistic car driving data acceleration of vehicle offline car-following data highway 
Fuzzy rule-based 
neural network 

Fuzzy logic is used to 
discretise traffic state 
and action variables 
and reinforcement 
learning method is 

used for neural 
network to learn 

driving behavior from 
naturalistic data 

machine 
learning 

2013 Daziano et al. 
simulation data from three-

legged intersections in 
California 

construction of 
intervals 

review review 
rural, urban and 

suburban 

Hierarchical Bayes 
methods, Bayesian 
Markov chain Monte 

Carlo methods 

Review of 
computational 

Bayesian 
econometrics and 

statistics applied to 
transportation 

modelling problems in 
road safety analysis 
and travel behavior  

statistical  
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Year Author Input variables  Output variables  Evaluation 
Monitoring driving 

behavior  
Road 

environment  
Utilized model Method Technique  

2012 Lefèvre et al. 

geometry, topology, pose, 
speed, distance traveled, 

intention to stop, expectation, 
physical, behavioral variables  

traffic situation and 
risk at road 

intersection, maneuver 
intention 

real-time   risk level (probability) 
highway, rural, 

urban 
Dynamic Bayesian 

Network (DBN) 

Vehicle-to-Vehicle 
(V2V) wireless 

communication links 
 statistical  

2012 
Koutsopoulos et 

al. 

vehicle position, lane, speed, 
acceleration and deceleration 

at 0.1s 
acceleration of vehicle offline 

collection of car-
following data 

urban motorway 

Discrete choice 
model. Latent class-
like model. Creates a 

desired mixture of 
acceleration, 

deceleration or do-
nothing in order to 

estimate the desired 
speed to the 

preceding vehicle 

Joint distribution of 
sequence 

observations, 
maximisation of the 
likelihood function 

statistical  

2011 Angkititrakul et al. 
 acceleration,deceleration, 
vehicle velocity, following 

distance, gas-pedal pattern 
car-following behavior real-time  

abnormal driving 
(probability) 

highway, rural, 
urban 

Gaussian mixture 
model (GMM) 

maximum a posterior 
(MAP) 

 statistical  

2011 Jovanis et al. 

driver attributes, demographic 
(gender, years driving, age) 
and physiological (visual or 
other impairments), event 

attributes (precipitating 
event), driving contexts (road, 

environment, and traffic 
conditions at time of event) 

crash, near crash, 
critical incident, non-

crash risk 
real-time   risk level (probability) 

highway, rural, 
urban 

standard binary 
Multilevel Logit model 

quasi-likelihood 
method, Taylor series 

expansion, 
linearization method 

(purpose) 

 statistical  

2011 
Constantinou et 

al.  

sensitivity to reqard, 
disinhibition, impulsiveness, 

experience, violations 

Young drivers 
offenses and 

accidents 
  Number   SEM   Self-report 

2010 Ma et al.  
attitudes, perceptions, 

violations (aggressive or 
ordinary), concern 

Behavior and safety of 
public transport drivers 

  Likelihood of crash   SEM   Self-report 

2008 Imkamon et al. 

acceleration, velocity, engine 
rpm, free driving space, 
change in left/right view 

according to driver’s vision 

3 levels of hazardous 
driving 

real-time  
 risk level (high, 
medium, low) 

highway, rural, 
urban 

Fuzzy logic model KLT algorithm statistical  
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Monitoring driving 

behavior  
Road 

environment  
Utilized model Method Technique  

2008 Shankar et al. 

contextual (roadway, 
environmental, traffic), 
surrogate (precipitating 

factors, incident triggers) and 
driver (attitudinal, profile) 

variables 

crash or non-crash risk real-time   risk level (probability) 
freeway, non-

freeway 

hierarchical Dynamic 
Bayesian model 

(DBM)  

Case Control method, 
Cohort based design 

method (purpose) 
statistical  

2007 Abe et al. 

driver’s state (driver is in 
hurry or not, stress, heart 
rate, heart rate variability), 

acceleration, stop, coasting, 
braking 

vehicle speed, gas 
pedal stroke, brake/ 

no-brake pedal stroke 
simulator 

abnormal driving 
(high, medium, low) 

highway, rural, 
urban 

Auto-Regressive 
Hidden Markov Model 

(AR-HMM)   
Probability calculation 

 machine 
learning   

 


