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Executive summary  

The i-DREAMS project aims at setting up a framework for the definition, development, testing 

and validation of a context-aware safety envelope for driving called the ‘Safety Tolerance 

Zone’. Taking into account driver background factors and real-time risk indicators associated 

with the driving performance as well as the driver state and driving task complexity indicators, 

a continuous real-time assessment will be made to monitor and determine if a driver is within 

acceptable boundaries of safe operation. Moreover, safety-oriented interventions will be 

developed to inform or warn the driver in real-time in an effective way as well as on an 

aggregated level after driving, through an app- and web-based gamified coaching platform 

(post-trip intervention). Furthermore, a user-license Human Factors database with anonymized 

data from the simulator and field experiments will be developed.  

The conceptual framework of the i-DREAMS platform integrates aspects of monitoring (such 

as context, operator, vehicle, task complexity and coping capacity), to develop a safety 

tolerance zone for driving. In-vehicle interventions and post trip interventions will help to 

maintain the safety tolerance zone as well as provide feedback to the driver. This conceptual 

framework will be tested in simulator studies and three stages of on-road trials in Belgium, 

Germany, Greece, Portugal and the United Kingdom with a total of 600 participants 

representing car, bus, truck and train drivers. In relation to driver-related factors, operator state 

and trait factors will also be considered and measured as part of this platform. 

The documented work was guided by the following objectives: 

 Identification of measurable factors contributing to the overall risk level at a given time 

and documentation of corresponding indicators for the i-DREAMS modes (car, bus, 

truck, train)  

 Review and assessment of state of the art (in-vehicle) technology suitable to track 

those indicators and combine them to get a real-time indication of risk  

 Give recommendations on set of relevant systems suitable for test case implementation 

as a next step in the project 

Currently, there is no standard procedure for measuring the driver’s coping capacity and task 

complexity, with a plethora of methods, indicators and algorithms, each with strengths and 

drawbacks. Capturing real-time workload assessment by monitoring driver state and driving 

context evoked task demand is the main objective of the work documented in this report. 

Moreover, the conclusions drawn from this review serve as the base for selecting appropriate 

measuring systems and devices for the future project work and for building the theoretical and 

mathematical model which are the backbone of the development of the i-DREAMS platform. 

Constructs to be measured are task demand, the driver’s cognitive and affectional state 

(mental state) in terms of attention and distraction, fatigue and sleepiness, and emotional 

states, and driving behaviour, as well as more stable characteristics which are known to impact 

safe driving.  

A systematic search of relevant scientific and grey literature was conducted for each of the 

three key driver mental states (attention and distraction, fatigue and sleepiness, and emotion), 

with the purpose of identifying approaches to measure the various driver states. Search terms 

were generated for each of the mental states and entered in combination in various well-

established databases. The findings were screened by title and then abstract, and relevant 

literature was documented and summarised. This report contains a dedicated section in 

chapter five for each of the four main driver mental states. The literature predominantly 

concerned car driving, however the extent of the transferability of the findings to the other i-

DREAMS modes (truck, bus, train and tram), is discussed in each section.  
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Chapter four of this report focuses on measuring task demand and the indicators, methods 

and technology for the real-time monitoring of driving context. Measures indicating cognitive 

workload as well as task demand impacted by traffic environment factors were considered. 

The three main classifications of measuring task demand were subjective, performance and 

physiological measures. In terms of subjective measures, it was found that the Rating Scale 

for Mental Effort (RSME) and the NASA Task Load Index (TLX) were reliable and sensitive 

indicators for workload measurement. Performance measures focused on techniques that 

registered driver ability to perform driving tasks at acceptable or safe levels, with lateral position 

deviation on if the most important indicators. Speed, longitudinal control and reaction time were 

other important indicators to assess driving performance. Physiological measures included 

heart rate, EOG, EEG, EDA, head movements and evaluation of eye movement, with the most 

frequent and reliable measures as eye fixations and ECG signals which could potentially be 

measured through steering wheel sensors and eye tracking systems.  

The indicators, methods and technology for the three key driver mental states is reviewed in 

chapter five. In terms of attention and distraction, in most cases driver distraction was 

measured in terms of impact on attention, behaviour and accident risk. Real time eye tracking, 

radars for physiological measurement and cameras were the most frequent detection 

techniques. Driver distraction could also be measured by lateral/longitudinal measurement, 

safety measures such as reaction time or gap acceptance, and eye or workload measures. 

However, the literature indicated a diverse range of methods and experimental design. The 

majority of studies reviewed in relation to fatigue focused on ‘sleepiness’ rather than task 

related fatigue, with most research conducted in simulators. EEG was the most frequently used 

measure, however, could be impractical for use with the proposed system. HRV shows 

potential and can be developed into unobtrusive measures, however this method has not been 

used much in operational settings and needs further development and validation. Ocular 

measures are reliable and utilised mostly in commercial sleepiness detection technology, with 

blink duration and PERCLOS being the most robust indicators. Many studies used multiple 

measures and indicators to detect sleepiness, which could aid in the detection reliability. The 

review of literature focusing on measuring emotion, anger, frustration, aggression, stress, fear 

and anxiety were the most frequently studied constructs. In terms of potential indicators of 

emotional states, EDA and heart-based measures were the most frequently used indicators, 

with the majority of studies using more than one measure. With regards to the measurement 

of substance impairment, driving under the influence of drugs and medicines is less well 

understood than drink driving. There is limited universal agreement on the most reliable way 

to measure impairment from drugs or medicines. Wearable technologies have recently been 

developed to monitor substance impairment; however, these are insufficiently validated. The 

majority of available technology focuses on monitoring impairment from alcohol, for example 

wrist worn transdermal alcohol sensors.  

Indicators and methods of measuring driver characteristics is detailed in chapter six. Many 

variables important for assessing a driver’s capability are not suitable for real-time measuring 

since they are more robust over time and less sensitive to situational influences. The one-time 

measurement of cognitive capabilities and competences such as attention regulation and 

reactivity as well as personal factors such as personality, experience, age, gender, cultural 

identity and health status is advised. Many factors can be measured through surveying; 

however, some require commercially available performance test equipment. Collecting driver 

characteristics about the i-DREAMS participants serves various goals in the project: populating 

the i-DREAMS research data base, customizing interventions, accounting for covariates and 

possibly introducing stable factors into the Safety Tolerance Zone model as correction factors. 

Chapter seven details the indicators, methods and technology for the real-time monitoring of 

driver behaviour. Reviewed tools included cameras, smartphones, OBD-II, GPS, radar, lidar, 
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laser, steering angle sensors, distance sensors, brake and gas pedal sensors, speed sensors, 

yaw rate sensors, thermal radiation sensors, infrared sensors, digital tachograph, 

potentiometer, inertial sensors. Both direct and indirect measures could be used to monitoring 

driving behaviour, including speed, trajectory, acceleration and time to collision. However, the 

majority of the literature focused on on-road vehicles and possibly would not be applicable to 

trains and trams.  

In terms of the implications for i-DREAMS and the relevance for the project’s technology, an 

overall conclusion that can be drawn is that two physiological/behavioural measurement 

methods should be used for the continuous driver monitoring. This insight applies to measuring 

all of the single constructs: task demand attention and distraction, fatigue and sleepiness as 

well as emotions and related constructs. Thereby, drawbacks of a single measurement method 

can be compensated for, assuring validity is facilitated. While heart rate measures show 

promise, heart rate and heart rate variability are sensitive to inter-individual differences and 

confounding factors, which need to be considered. ECG indicators can be recorded through 

sensors on the steering wheel, with the potential to measure several driver states, a 

complementary eye tracker seems beneficial. An additional camera can be used to track head 

and eye features and changes in facial features as an indication of emotional states. Wrist 

worn measures may also be beneficial, and could be used to heart rate, EDA, as well as alcohol 

impairment. In addition, advanced driver-assistance systems, which utilize a forward-facing 

camera and provide warnings for collision prevention and mitigation, as well as smartphone 

applications which can measures lateral and longitudinal acceleration, can be utilized as 

surrogate safety measures. 

The table below summarises the operator states, and the recommended measures, technology 

and thresholds for use when monitoring driver task complexity and coping capacity.  

 

Operator 
state 

Optimal 
measure 

Ideal 
technology 

Influence on 
coping 
capacity/ 
task demand 

Safety 
critical 
threshold  

Frequency of 
measure 
(real time or 
one-off) 

Attention and 
distraction 

- PERCLOS 

- PERLOOK  

- Glance 
duration 

- Head 
movement 

- driver 
behaviour 
(lateral and 
longitudinal 
measures, 
reaction time, 
gap 
acceptance) 

- Eye tracker 
(glasses / 
system) 

- Driver facing 
camera 

- Forward 
facing camera 
and collision 
avoidance 
system 
(Mobileye) 

Increased 
PERCLOS, 
PERLOOK, 
glance duration, 
head 
movements = 
increased 
distraction and 
reduced coping 
capacity. 

- PERCLOS 
and PERLOOK 
> 35% 

- Glace duration 
of 2 seconds 

- Head turns > 
5 seconds 

 

Real time  

Alertness 

(fatigue / 
sleepiness) 

- Blink rate 

- PERCLOS  

- Heart rate 
variability 
(HRV) 

 

- Eye tracker 
(glasses / 
system) 

- Driver facing 
camera 

- Heart rate 
sensors 
embedded in 
steering wheel 
(CardioWheel) 

Slowed blink 
rate, increased 
PERCLOS = 
increased 
sleepiness and 
reduced coping 
capacity. HRV 
data mixed 
findings 

 

Various 
thresholds 
reported 

Real time  
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- Wearable 
heart rate 
monitor 

Emotion, stress - ECG (heart 
rate) 

- EDA 

- ECG sensors 
(CardioWheel) 

- EDA wearable 
device 

- Driver facing 
camera 

- Eye tracker 
(glasses / 
system) 

Increased heart 
rate and EDA = 
increased 
emotional 
response and 
reduced coping 
capacity 

Unsure Real time  

Substance 
impairment 

- Blood and 
Urine samples 

- Tissue 
readings 

-Breathalysers 

- EDA  

- Wearable 
sensors 
(TruTouch) 

Increased 
reading of 
impairment = 
reduced coping 
capacity  

Unsure Real time and 
one-off 

Driving 
behaviour  

- Speed  

- Braking 

- Lateral and 
longitudinal 
movement 

- Trajectory  

- Acceleration 

- Time to 
collision 

- Forward 
facing camera 
and collision 
avoidance 
system 
(Mobileye) 

- Smart phones 

- Various 
driving sensors 

Increased 
variables = 
reduced coping 
capacity 

Various 
thresholds 
reported 

Real time, post 
trip 

 

Overall recommendations for i-DREAMS include: 

 Most of the evidence is available for car drivers. The transferability of some of the 

findings to trucks, busses, trams and trains may partly be determined in an iterative 

process and by actual trial and error 

 ‘Mental state’, ‘emotions’, ‘distraction’ etc. are theoretical constructs that ask for 

deciding on one of the plethora of definitions and theoretical concepts.  

 Using at least two approaches for driver state monitoring will be beneficial for 

assuring validity and reliability 

 Majority of driver mental state variables could be measured with cameras, eye 

tracking, and heart rate sensors either embedded in the steering wheel or 

incorporated into It should be considered that the use of devices that have to be put 

on or activated by the participant before driving may compromise the naturalistic 

driving character of the trials.  

 The potential to consider the drivers’ traits and characteristics in the calculation of the 

safety tolerance zone should be explored.   

 Thoroughly testing indicators and measures at the simulator stage is indispensable 
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1 Introduction 

1.1 About the i-DREAMS project  

The overall objective of the i-DREAMS project is to setup a framework for the definition, 

development, testing and validation of a context-aware safety envelope for driving (‘Safety 

Tolerance Zone’), within a smart Driver, Vehicle & Environment Assessment and Monitoring 

System (i-DREAMS). Taking into account driver background factors and real-time risk 

indicators associated with the driving performance as well as the driver state and driving task 

complexity indicators, a continuous real-time assessment will be made to monitor and 

determine if a driver is within acceptable boundaries of safe operation. Moreover, safety-

oriented interventions will be developed to inform or warn the driver real-time in an effective 

way as well as on an aggregated level after driving through an app- and web-based gamified 

coaching platform. Figure 1 summarizes the conceptual framework, which will be tested in a 

simulator study and three stages of on-road trials in Belgium, Germany, Greece, Portugal and 

the United Kingdom with a total of 600 participants representing car, bus, truck and train 

drivers. 

 

 
Figure 1: Conceptual framework of the i-DREAMS platform. The green dotted frame indicates the thematic scope 
of this deliverable (see section 1.2) 

Expected by the end of the project in 2022, the key output of the project will be an integrated 

set of monitoring and communication tools for intervention and support, including i.e. in-vehicle 

assistance and feedback and notification tools as well as a gamified platform for self-

determined goal setting working with incentive schemes, training and community building 

tools1. Furthermore, a user-license Human Factors database with anonymized data from the 

simulator and field experiments will be developed.2  

 

                                                
1 A state-of-the-art assessment of real-time and post-trip intervention approaches are documented in 
Deliverable 2.2 of this project. 
2 Further general project information can be found on the website: https://idreamsproject.eu 

https://idreamsproject.eu/
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1.2 About this report 

The work presented in this deliverable addresses the left half of Figure 1, the monitoring of the 

task demand and complexity based on contextual factors of the driver environment and the 

monitoring of the driver (car, truck, bus and train) in real-time; both with the aim of eventually 

determining whether an individual operates within or without a safe zone.  

In recent years, considerable research has been conducted in relation to these topics and the 

development of associated technologies is progressing fast – especially in view of the 

autonomous driving boom – which has resulted in an enormous variety of approaches, data 

collection methods, monitoring and warning equipment etc. This variety and ever-changing 

technology maturity, however, also reflects the circumstance that there is not a standard 

approach but quite the contrary, a multitude of tools, measurement methods, indicators, 

algorithms etc. with specific advantages and drawbacks, delivering their full potential in specific 

contexts. Therefore, capturing the state of the art of monitoring techniques and subsequently 

assessing the applicability for i-DREAMS’ endeavour is indispensable.  

The documented work was guided by the following objectives: 

 Identification of measurable factors contributing to the overall risk level at a given time 

and documentation of corresponding indicators for the i-DREAMS modes (car, bus, 

truck, train)  

 Review and assessment of state of the art (in-vehicle) technology suitable to track 

those indicators and combine them to get a real-time indication of risk  

 Give recommendations on set of relevant systems suitable for test case implementation 

as a next step in the project 

 

To achieve those objectives a comprehensive literature search (scientific as well as grey 

literature) was conducted and identified measurement methods and associated technologies 

were assessed based on pre-defined criteria such as intrusiveness, validity etc. The review 

started with the transportation mode which is covered most extensively in literature: the car. 

Following this, the transferability of the results to the other three i-DREAMS modes was 

assessed and if necessary, a dedicated further search for a certain mode was carried out. 

Where applicable, the circumstances of professional drivers versus non-professional drivers 

were considered, as this is an integral part of the i-DREAMS objectives. 

 

While the context factors such as road layout or weather are somewhat self-explanatory, many 

driver-related factors are not. When discussing the mental state of a driver, the constructs 

attention vs. distraction, sleepiness and fatigue, emotions, arousal, stress and substance 

impairment (alcohol, illegal and prescribed drugs) are referred to. Driver behaviour patterns 

(longitudinal and lateral control etc.) can also be a result of the driver’s state and measured in 

real time. Therefore, driver behaviour indicators were considered in state-of-the-art analysis 

as well (Figure 2) and which ultimately will determine the safety tolerance zone together with 

the driver state and the driving context. The state factors change continuously during driving 

while the operator’s or driver’s trait factors are more stable over time but nevertheless, affect 

driver behaviour and driver safety. Figure 2 provides an overview of exemplary operator state 

and trait factors that are considered in this state-of-the-art analysis.  
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Figure 2: Exemplary driver state and trait factors, which will be measured before the drive (categorial) and during 

the drive (continuously) 

 

Although, the relevant factors and associated measurement techniques and tools – in regard 

to the environment as well as the operator – are elaborated in sequential, dedicated chapters 

in this report, this does not mean they are independent from each other. Mental state factors 

can limit the available coping capacities and together with the factors defining the task 

complexity at a given moment, they determine workload in a complex, non-linear way. For 

example, a certain driving behaviour, like compromised lateral control, can be an expression 

of fatigue. Health factors like mild cognitive impairment can influence the mental state and the 

driving behaviour – to some extent independently and to some extent in a chained sequence. 

Where possible, these intercorrelations and pitfalls have been considered throughout this 

review. However, the main purpose of this report is to document the factors which should be 

considered throughout the project and the review as well as assessment of measuring 

methods, both in a simulator and in the real-world driving environment. This results in the 

recommendations as reported in chapter 7. 
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2 Theoretical considerations and introduction of concepts 

and terminology 

Designing and validating a holistic driver monitoring system ideally requires an exhaustive list 

of factors contributing to the dynamic safety envelope, the safety tolerance zone (STZ). That 

is, broadly speaking, a combination of factors determining the driving task demand and the 

individual capacities to cope with the task. The dynamic combination of those two concepts 

can also be referred to as workload and is partly expressed in driver performance.3  

The driving task can be characterised as the ‘dynamic control task in which the driver has to 

select relevant information from a vast array of mainly visual inputs to make decisions and 

execute appropriate control responses’ and ‘drivers execute planned actions which are shaped 

by their expectations of the unfolding road, pedestrian and traffic scenario in front of them and 

the reality that they actually observe‘ ‘(Shinar & Oppenheim, 2011, p.216). Thus, it is partly 

determined by exogenous factors of the driving environment and partly by the driver’s 

perception, planning and execution abilities. The latter in turn, is influenced by a plethora of 

situational and continuous driver characteristics. The mental state, consisting of cognitive and 

affective state, is considered dynamic, can change constantly and is aimed at being measured 

in real-time through physiological indicators while driving. Driver characteristics, such as 

personality and experience, are more stable over time and thus, do not require real-time 

assessment but are still important to consider.  

In an attempt to be as comprehensive as possible with single influencing factors, the most 

obvious source is accident statistics and systematic road safety risk assessments (e.g. the 

SafetyCube DSS4). Psychological fitness to drive regulations or the Goals for Driver Education 

(Hatakka et al., 2002) are valuable additional sources. 

 

2.1 Driver state monitoring 

As the real-time measurement of physiological and behavioural indicators is crucial for the i-

DREAMS concept. In this report the most important ones will be introduced below with 

definitions and descriptions. 

In general, physiological measures refer to the activity of the autonomous nervous system, for 

example the heartbeat. This activity cannot (or hardly) be controlled by an individual whereas 

behavioural measures refer to the movement of body parts that can actively be controlled, 

such as the eyes or facial expression, and which, however, are not always controlled 

consciously.  

Among the physiological indicators, the individual’s level of arousal is a central concept which 

is linked to attention, alertness, stress and emotions (Borghini et al., 2014). Arousal is largely 

affected by the autonomous nervous system (ANS), which includes sympathetic and 

parasympathetic branches. The sympathetic branch generates an alerting response in 

stressful situations, which can be recognized by increased breathing rate, accelerated heart 

rate (HR), sweaty palms and dilated pupils. The parasympathetic branch is mostly activated 

during relaxed situations, such as sleep periods and leads to decreased breathing rate, HR 

and blood pressure. Therefore, breathing rate, HR and skin moisture are examples of 

indicators of the ANS’s activity, which in turn can indicate the driver’s arousal level and 

alertness. 

                                                
3 While the current state of the vehicle plays a role as well, it is not subject to the considerations of this 

state-of-the-art review. 

4 https://www.roadsafety-dss.eu/  

https://www.roadsafety-dss.eu/
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Significant advancements have been made recently in the domain of signal processing and in 

developing signal acquisition and processing methods for driver monitoring systems, typical 

referred to as Driver State Monitoring (DSM). Many DSM systems combine various sources of 

information, including sensors that measure in-vehicle indicators (e.g. the steering angle), 

sensors measure a driver’s physiological signals (e.g. heartbeat or changes in blood volume) 

and camera(s) installed in the passenger cabin to detect behavioural indicators such as the 

head position or frequency of eye lid closure.  

Table 1 summarizes a list of the most important physiological indicators and measurement 

methods related to DSM. No claim is made to completeness. Further indicators are introduced 

in the subsequent chapters.  

 

Table 1: Short descriptions of physiological measures which are commonly used as indicators for attention, 
fatigue, stress and emotional states 

Physiological and behavioural indicators and measures of the driver state 

Blood oxygen saturation Blood oxygen saturation can be measured with a pulse oximeter device, 
which is worn on the finger. The ratio of oxygenated versus deoxygenated 
haemoglobin in the blood and blood volume results in the saturation. The 
oxygen saturation impacts brain functions such as memory, decision 
making and attention. (Mabry et al., 2019) 

Blood pressure 

 

Blood pressure is the force on the blood vessels and is dependent on the 
stage of the cardiac cycle (low to high) and is affected by various factors 
such as age, stress or environmental influences. It is described as a pair 
of the systolic (highest level) and diastolic (lowest level) value. Arousal 
during mental effort leads to greater cardiovascular reactivity and thereby 
to increased blood pressure. The most commonly used non-invasive 
measuring method is auscultatory measurement recording the sound of 
the blood flow. (Balters & Steinert, 2015; Schmidt, 2017; Lohani et al., 
2019) 

EDA, Electrodermal 
activity 

 GSR, Galvanic skin 
response 

SC, Skin conductance 

EDA, GSR or SC is the continuous variation in the electrical 
characteristics of the skin. Measuring tools consist mostly of two 
electrodes applicated on fingers or toes to measure the electrical 
conductance between two points on the skin. It is not steady but varies in 
relation to other factors such as the moisture level (sweat) (Gonzalez-
Sanchez et al., 2017;) 

EEG, Electro-
encephalogram 

Neuronal, electrical activity of the brain and brain waves can be detected 
with the help of EEG by applying electrodes on the scalp. The neuronal 
activity exists between positive and negative potentials of the electrodes. 
A neutral electrode is needed for reference. Electroencephalography can 
detect several types of waves, for example alpha, beta, delta and theta 
waves which each are specific for different states such as a conscious 
state of mind or cognitive processes and sleep phases (Balters & Steinert, 
2015; Madry et al., 2019). 

EOG, 
Electrooculography 

Electrooculography is a technique to measure the movement and position 
of the eyes, such as saccadic movements and fixations, blinking 
(frequency, duration, velocity, amplitude) and share of time the eyes are 
closed (PERCLOS). Electrodes are placed above and below the eyes for 
measuring electric potentials between them (Jia & Tyler, 2019).  

ECG, Electrocardiogram ECG is a non-invasive measurement method to measure heart rate and 
heart rate variability. The contraction of the heart is based on 
depolarization. ECG uses the electrical potential difference between two 
electrodes which is caused by cardiac potential differences (electrical 
activity of the heart). At least three electrodes are necessary for an ECG, 
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whereas one electrode is used as a neural electrode. (Stockburger & 
Möckel, 2016; Balters & Steinert, 2015) 

fNIRS, functional near-
infrared spectroscopy  

fNIRS is a neuro imaging technique that measures changes in 
concentration of oxygenated and deoxygenated haemoglobin in the 
cortex by means of near-infrared light. This is associated with neuronal 
activity. Compared to other neuro imaging methods, it is more robust in 
relation to movement. (Sangani et al., 2015; Mabry, 2019) 

Head movement  By means of videography or head tracking devices, the head’s position 
and movement can be measured, which used to identify 
fatigue/sleepiness and distraction (Mabry, 2019). 

HR, Heart rate 

HRV, Heart rate 
variability 

Heart rate is simply referring to the number of heartbeats per minute, 
which is between 60 and 90 beats for the average adult. ECG is most 
frequently used to monitor the cardiac activity in the laboratory and 
controlled environments. HR increases with increasing activity of 
sympathetic nervous system as well as with the decrease of the 
parasympathetic activity (and vice versa). 

HRV is the variation of the time between heartbeats and is linked to other 
physiological information such as respiration, temperature and vasomotor 
activity. (Shaffer & Ginsberg, 2017; Mabry, 2019) 

IBI, Inter beat interval The inter-beat interval is also called beat to beat interval and is the interval 
between the heart beats.  

Ocular measures (other 
than EOG) 

Movement of eyes, eye-blinking, pupil diameter and eyelid closure can not 
only be measured by means of EOG but also with videography or eye 
tracking. The indicator PERCLOS represents the percentage of time 
during which the pupils are covered by more than 80%. PERCLOS is 
mainly used for detecting fatigue and sleepiness. There are devices which 
directly measure and feedback on PERCLOS. However, ocular measures 
are also very important for the indication of attention and distraction 
(scanning patterns, direction of views etc.). (Mabry, 2019) 

PPG, 
Photoplethysmography 

Changes of blood volume can be detected with the optical method of 
photoplethysmography. It makes use of infrared light and can measure on 
the skin surface. The retrieved waveform is associated with the cardiac 
synchronous changes in the blood volume. (Allen, 2007; Rabe & Gerlach, 
2005) 

Skin temperature, 
thermography 

Changes in skin temperature can serve as indicators for e.g. emotional 
states. Thermal cameras are used to record radiation emitted in the 
mid/long wavelength, which allows to detect the surface temperature of 
individuals. Facial thermography captures the heat distribution on the 
forehead or nose which varies depending on the sympathetic activity. 
(Lohani et al., 2019) 
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3 Task demand – indicators, methods and technology for 

real-time monitoring of driving context 

Learning to drive demands a lot of practice before expert levels are reached. To begin with, 

task demand is determined by goals that have to be reached by performance (de Waard, 1996; 

Fairclough et al., 2005; Paxion et al., 2014). The driving task is partly determined by the 

demands of the road environment, traffic restrictions, weather conditions and time of the day 

or location (European Commission, 2019). However, the complexity of the driving task is also 

associated with driver performance, such as harsh events, driving speeds, or following 

distances. In order to capture all possible mechanisms of driving context and their influence 

on the driving task, task demand was investigated in terms of both cognitive workload (section 

4.1), as well as the impact of exogenous factors on road safety (section 4.2). As the perception 

of the driver is also considered in the i-Dreams project, section 4.3 discusses the potential of 

using physiological measurement to assess subjective task demand. Furthermore, because 

the majority of the studies with regards to task demand are concerned with passenger cars, 

section 4.4 discusses the transferability of task demand monitoring for trains, buses and trucks. 

Finally, conclusions and recommendations are drawn in section 4.5.  

 

3.1 Task demand measured as cognitive workload 

Technologies for monitoring task demand are developed in order to mitigate the contextual 

effect on driving and contribute to driver behaviour traffic road safety enhancement (Sowmya, 

2014; Sezgin & Lin, 2019). In order to identify the most relevant factors contributing to driving 

task demand, a literature search was initiated to correlate the aforementioned four factors (road 

layout, traffic environment, weather and daytime) with task demand and complexity.  

An initial examination of the identified studies demonstrated that the state-of-the-art research 

deals mostly with the effects of road layout, traffic conditions and weather on driver's task 

demand. On the contrary, limited evidence of studies investigating the relationship between 

driver's task complexity and time or location was found. As mentioned before, the included 

studies are concerned with monitoring the effect of contextual information on task demand and 

are not involved with the effect of road, traffic, time and weather characteristics on road safety. 

Literature was searched within popular scientific databases such as Scopus, ScienceDirect 

and Google Scholar. The key words used per factor, as well as the number of screened and 

included papers are provided in Table 2. Details of the reviewed studies can be found in 

Annex A. 

Table 2: Key words, screened and included papers per factor analysed 

Factor  Key words (without word stem variations) 
Screened 

papers Included papers 

Task 
Demand 

"task demand" AND  "driving measures"  OR  "performance 
measurements" OR  "driver characteristics"  OR  "driving 
monitoring" OR  "workload"  OR "traffic conditions" OR 

"traffic" OR  "weather" OR "road layout" OR "time of day" 

413 11 

 

The effect of increased mental and physical demand on the driving task, is most frequently 

measured by physiological indicators and tools such as ECG for heart-related measurements 

(de Waard and Brookhuis, 1991; Schwarze et al., 2014; Stuiver et al., 2014; Marquart et al., 

2015; Stojmenova and Sodnik, 2015; Bongiorno et al., 2017), EEG or functional near infrared 

spectroscopy (fNIRS) for brain activity measurements (de Waard and Brookhuis, 1991; 

Stojmenova and Sodnik, 2015; Bongiorno et al., 2017), skin conductance (Stojmenova and 

Sodnik, 2015; Bongiorno et al., 2017; Foy and Chapman, 2018) or eye tracking measures 
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(Brookhuis and de Waard, 2010; Benedetto et al., 2011; Auflick, 2015; Marquart et al., 2015; 

Stojmenova and Sodnik, 2015; Foy and Chapman, 2018). Other successful indicators of 

additional workload posed on the driver during difficult driving tasks include vehicle kinematics 

(de Waard et al., 2008; Auflick, 2015; Foy and Chapman, 2018).  

In order to quantify the effects, researchers mostly conduct a driving simulator experiment, 

while only two of the eleven studies also tested their research questions on an open-field 

driving experiment (de Waard and Brookhuis, 1991; Patten et al., 2006). 

With regards to the results of the reviewed studies, it was observed that there is a decrease in 

heart rate when traffic is dense under adverse weather e.g. fog; (Stuiver et al., 2014), which is 

also evident when transitioning to a motorway from urban traffic (de Waard and Brookhuis, 

1991). Moreover, systolic blood pressure variability leads to a stronger increase of workload 

with the appearance of fog, especially in the high traffic conditions. An increase in heart rate 

has been documented during lane changing events (de Waard et al., 2008) and when drivers 

join the urban traffic from a quiet motorway (de Waard and Brookhuis, 1991). Additionally, an 

increase in HGV vehicle composition was found to increase mental effort of drivers and led to 

larger speed variation and shorter time safety margins (de Waard et al., 2008). In Marquart et 

al. (2015), eye blink rates decreases with sharper road curves, as the driving task becomes 

more demanding. It was found that a shorter blink duration increases both mental and visual 

task demands and blink rate. Furthermore, PERCLOS, fixation duration and pupil dilation also 

increase for all cognitive tasks during hazardous moments such as listening, talking, or 

calculating, indicating increased mental workload compared to the control condition. 

In addition, it was identified that road geometry or traffic contribute to mental workload 

functions. For instance, when road geometry is more complicated, drivers become more 

stressful and they are required to have more concentration on the driving task (Bongiorno et 

al., 2017). Also, an increase of visibility leads to Galvanic Skin Response (GSR) increase. 

According to Schwarze et al. (2014), who investigated the driving difficulties for elderly drivers, 

darkness and rain increase the mental workload and it was shown that a higher workload is 

required in difficult weather situations for both age groups. Furthermore, increases in 

subjective ratings of mental workload caused by changes in road type were accompanied by 

increases in skin conductance, acceleration signatures and horizontal spread. Such changes 

were also associated with increases in the concentration of oxygenated haemoglobin in the 

prefrontal cortex (Foy and Chapman, 2018). The main disadvantage of the aforementioned 

studies was that there are no thresholds given for detecting a significant effect of context on 

the difficulty level of the driving task and that most of the studies were concerned only with car 

drivers. 

 

3.2 Task demand as an indirect result of exogenous factors 

Task demand systematically identifies variables which influence the level of individual effort in 

a given traffic scenario. Indicators for exogenous factors5, identified as relevant for the overall 

driver state and thus risk level, are reviewed and compared in a systematic way. The majority 

of the reviewed studies in this section present an indirect effect on task demand as they were 

mostly concerned with accident frequency, risky driving behaviour or the probability of an 

accident. The assumption is that infrastructure, traffic or external conditions leading to 

decreased safety levels, play a negative role with regards to task demand as well. Studies 

were considered to describe a negative effect on task demand if risk or difficulties were found 

to increase, and a positive effect if a decrease of these factors was observed. Detailed results 

                                                
5 Exogenous factors are ones that emerge outside of the vehicle, thus, not related to the driver or the vehicle but 
the driving envorionment 
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on the effect of road layout, weather and traffic conditions, as well as time on task demand are 

presented in the following sections. Details on the reviewed studies can be found in Annex B. 

 

4.2.1 Road layout 

With regards to road layout, it was observed that there appears to be an increase in task 

demand when the number of lanes is higher (Chenqye et al., 2013; Rangel et al., 2013). 

Furthermore, narrow lanes (Russo et al., 2014; Da Costa et al., 2018) and wider lanes with 

high traffic volumes (Rangel et al., 2013) increase task demand and subsequently increase 

crash risk, accidents, injuries or fatalities. Moreover, it was found that deceleration lane lengths 

(Chen et al., 2009) and spirals, highway curves or geometric design (Zegeer et al., 1990) make 

driving performance more difficult, increasing the risk and frequency of crashes. Likewise, 

minor right-turn lanes, main and secondary roads or motorways increase the task demand and 

risk or crash frequency (Bergel et al., 2011; Pulugurtha and Nujjetty, 2011). According to Valent 

et al. (2002) driving in a provincial or state road within an urban area results in increased task 

demand and leads to an intense anxiety for risk of fatal and non-fatal injuries. Similarly, driving 

in a major artery road for heavy tractor trailers and also in a primary state arterial road (Stephan 

and Newstead, 2014) requires greater concentration (Blower et al., 1993). 

 

4.2.2 Traffic 

Through-traffic per lane on minor roads (Guo et al., 2010) was found to decrease the task 

demand. All studies indicated that congestion is associated with increased driving difficulty and 

crash occurrence. In particular, Shi et al. (2016) found congestion to be detrimental for crash 

frequency during peak hours. Furthermore, it was revealed that congestion, and to a lesser 

degree transition, increased the driving complexity and therefore the odds of a crash (Zheng, 

2012). According to Golob et al. (2008), when the entire road is congested, there was an 

increase of task demand because crashes were more likely to be caused. Finally, Wang et al. 

(2013) showed that a 1% increase in traffic delay per kilometre, where vehicles move very 

slowly, increased KSI6 crashes by about 0.1%.  

Trains regularly share tracks with other trains, with points where tracks have to be crossed, 

increasing task demand. Train drivers need to attend to signal information, clearing them to 

cross or proceed along tracks. Therefore, passing signals at danger can increase the risk of 

collisions. Although trains do not have to contend with traffic in the same way as road transport, 

trains still have to share the tracks with other trains, sometimes overtaking slower moving 

trains. Trams on the other hand often share the road with multiple road users, navigating 

differing road layouts and traffic, all of which increasing task demand.  

 

4.2.3 Weather 

Weather conditions have been found to have a significant effect on task demand. For example, 

rain intensity or duration (Brijs et al., 2008) as well as rainfall height (Fridstrøm and 

Ingebrigtsen, 1991, Elvik et al., 2013) increase driving complexity. Martensen et al. (2016) 

investigated the effect of frost and found a noticeable increase of task demand on motorways 

by a percentage of 71%. Rainfall has been associated with a higher accident risk, which 

appears to be confirmed by the higher number of victims among car occupants under rainy 

conditions. It must be noted however, that among motorcyclists all risk factors associated with 

rain such as bad vision, visibility, or friction, are applied even more strongly than for car users. 

In addition, snow was found to be connected with a decrease in the total number of injuries or 

fatal crashes and crashes involving a two-wheeler and car crashes, but it was found that the 

                                                
6 Killed and seriously injured 

https://www.powerthesaurus.org/in_particular/synonyms
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impact of snow was not significant in other cases. Likewise, fog has been revealed to 

negatively affect task demand in Abdel-Aty et al. (2011) and Sabir (2011) where it was 

indicated that there was an increased likelihood of injury accident risk under fog conditions. In 

general, precipitation, sun, wind and frost/snow days, had an increase on driving complexity 

(Martensen et al., 2016). 

It is worth mentioning that weather conditions constitute a less important factor for trains and 

trams, apart from extreme weather such as floods or deep snow which may restrict passage 

on tracks. Heavy weather like fog, heavy rain or snow could impact task demand in relation to 

making it difficult to see and monitor signals. 

 

4.2.4 Time of the day 

With regards to the effect of time, it was revealed that the dark, the absence of street lighting 

and twilight influences task difficulty for drivers (Olszewski et al., 2015). Similarly, darkness 

was shown to increase the task demand and crash risk by 30% in urban areas, 50% in rural 

areas and 40% in both rural and urban areas (Johansson et al., 2009). In relation to time of 

the day, higher task complexity and driving risk was found to occur in the early morning hours 

from 05:00 to 06:00 and in the evening hours from 17:00 to 19:00 for both national and regional 

roads (Gaca and Kiec, 2013). 

It should be noted that time of day was not found to have a strong impact on train drivers. 

Tracks are not always lit, however, stations are. Darkness may increase task demand 

generally.  

 

3.3 Perceived task demand  

As indicated in the sections above, task complexity and task demand can be measured by 

various means. It is, however, also something that can be perceived and subjectively 

assessed. The correct assessment of the task demand is also linked to risk taking. If a driver 

underestimates the demand of a complex and dense junction for example, in favour of 

allocating cognitive resources to other tasks such as anticipating upcoming routing decisions, 

risk can increase. Many decisions in traffic have to be made quickly and not all relevant 

information may be accessible to the driver or assessed relevant to make a rational and the 

safest decision. Decisions are often made quickly and intuitively, which is referred to as the 

‘experiential system’ (Slovic et al., 2004) or ‘system 1’ in Kahneman’s famous dual process 

theory (2011). Similarly, the Somatic Marker Hypothesis emphasizes the biasing role of 

emotions and feelings on the process of decision making (Reimann & Bechara, 2010).  

In this context, the concept of task difficulty homeostasis is noteworthy. It postulates that 

drivers dynamically maintain the perceived task difficulty within certain boundaries that 

conform with their corresponding preferences. Perceived task difficulty results from the driver’s 

perceived capability in conjunction with task demand. The main mechanism for adjustment 

when task difficulty is outside of the preferred margins is reducing or increasing speed (Fuller, 

2011).7 There is recent research that tries to account for perceived capability and demand in 

warning systems. Wang et al. (2018) aimed at identifying thresholds for lane change warning 

systems in a simulator study that concurs with the driver’s perception rather than with absolute 

risk assessment. Furthermore, there is some indication that perceived risk can be inferred from 

physiological measures such as galvanic skin response (Vaa, 2014). However, this does not 

seem assured knowledge (yet). Moreover, the driver’s assessment of task demand does not 

necessarily correspond with the actual demand. A recent study by Stapel et al. (2019) 

                                                
7 i-DREAMS’ deliverable 3.1 further explores theoretical driver behaviour models and the link to the 
Safety Tolerance Zone. 
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compared objective and subjective task demand of handling an automated system. While 

drivers unexperienced with the system assessed the demand as equal to conventional driving, 

performance of a secondary task indicated increased task demand.  

 

3.4 Applicability to other modes 

Trains It is evident that train driving combines the need for prolonged sustained attention. In 

addition, train drivers also have to withstand the monotony of the driving task as well as the 

monotony of the environment (Dunn and Williamson, 2011). It's a fact that train driving requires 

expertise and experience and is also influenced and partly determined by other demands, such 

as weather conditions, speed restrictions, signals, platforms or passengers. Furthermore, train 

drivers have the complexities of managing speed, responding to signals, sometimes dealing 

with passengers and station stops, as well as unexpected obstructions on tracks, all of which 

could be considered high workload and task demand. However, train drivers also face the 

complexity of stretches of driving that consist of low workload with increased monitoring of 

speed and signals, requiring alertness and vigilance. Therefore, measures to identify the effect 

of driving task, for example psychophysiological indicators (ECG, EEG, skin conductance, 

vehicle kinematics, eye tracking) could/would be relevant for use in train drivers. 

 

General 

In the information processing and task performance literature search, the most representative 

and relatively more developed tools for measuring task demand were found through Galvanic 

Skin Response (GSR) sensors, in-vehicle information systems, OBD ports, cameras or eye 

tracking devices. Moreover, electroencephalography (EEG) or electrocardiogram (ECG) were 

also used, using electrodes to record brain's and heart's activity, respectively. These can be 

easily applied to other transport modes, i.e. not only for cars but also for trains, buses or trucks. 

For example, Torsvall and Åkerstedt (1987) measured EEG and EOG changes continuously 

in train drivers and Keckluno and Åkerstedt (1993) recorded truck drivers' on-going EEG 

activity during a night or evening of driving. The advantages of EEG and ECG recording 

methods are they could potentially be used in all modes, are typically non-invasive, and due 

to drivers being seated for periods of time when driving, distortion from physical movements 

should be limited. In addition, the Detection Response Task (i.e. a method for assessing the 

attentional effects of cognitive load in a driving environment; Stojmenova and Sodnik, 2018) 

was a method which can be transferable to all the transport modes in order to objectively obtain 

values for the mental workload of a task, or to assess the attentional effects of cognitive load 

in a driving environment.  

 

3.5 Conclusions on measuring task demand 

As demonstrated in the previous subsections, there were three main classifications of 

measuring task demand: subjective or self-report, performance and physiological measures 

(O’Donnel and Eggemeier, 1986). According to the conducted literature search, it was revealed 

that the most frequent measurement of task demand was derived through psychophysiological 

indicators and tools.  

With regards to self-report measures different dimensions of task demand, such as effort, 

individual differences, operator state and attitude were taken into account. De Waard (1996) 

claimed that no one was able to provide a more accurate judgement with respect to 

experienced mental workload than the person concerned. It was found that the Rating Scale 

for Mental Effort (RSME) and NASA Task Load Index (TLX) were reliable and sensitive 

indicators for subjective workload measurement.  



D2.1 State of the art on monitoring the driver state and task demand 

©i-DREAMS, 2020  Page 26 of 143 

In addition, performance measures rely on techniques of direct registration of driver ability to 

perform the driving task at a level considered acceptable and safe, and properly maintain the 

vehicle on the road without colliding with other road users (da Silva, 2014). It was found that 

lateral position deviation was one of the most important indicators of deficiencies in task 

demand and it can be translated by the possibility of the driver leaving the road centreline and 

getting involved in an accident. Furthermore, the results indicated that driving performance 

measures such as speed, longitudinal control or reaction time were some of the major 

indicators considered for assessing driver performance.  

Concerning physiological measures, the most reliable indicators were found to be heart rate, 

heart rate variability, assessment of electrooculogram (EOG), electroencephalogram (EEG), 

electrocardiogram (ECG), magnetoencephalography (MEG), electrodermal activity (EDA), 

head movements, evaluation of eye movement or pupil dilation and blood pressure evaluation.  

With regards to the i-Dreams project, psychophysiological measurements are preferred in 

order to detect task demand. The number and duration of eye fixations as well as ECG 

measures are the most reliable indicators. Steering wheel sensors for the aim of biometric 

recognition on electrocardiogram (ECG) signals from the driver’s hands and abnormal cardiac 

health problems can be utilized to that purpose and driving performance measurements can 

be detected through smartphone-based technologies. A supplementary eye tracking system 

to detect eye fixations could also prove beneficial for the detection of task demand within the 

project. 

It is worth mentioning that the majority of the studies reviewed, were conducted in driving 

simulators with limited studies using open field driving experiments with real road conditions 

within a specific transport mode. In driving simulators, a particular technology, device or 

navigation system that was connected directly to a specific transport mode has not been used 

for task demand monitoring. For instance, no technology or product was able to discriminate 

between cars' or trains' interior. The results obtained in driving simulators are applicable to 

real-world and on-road driving. Consequently, all methods that were developed from driving 

simulator experiments in order to measure task demand, are easily transferable to different 

transport modes. Indeed, technologies and sensors that were examined, are available and 

relevant for all modes of transport. Da Silva (2014) claimed that driving simulators were 

identified as the most widely used methodological environment in research and allowed the 

creation of real conditions without any objective risk. Finally, it was revealed that most of the 

measurement tools that were used to monitor task demand and complexity were adapted to 

all vehicles and no technological device or system was found to be adapted to a specific fleet's 

specifications. This could be very important for the i-DREAMS project, providing flexibility, 

meaning that the system does not need to be redesigned for each mode of transport. 

 

https://en.wikipedia.org/wiki/Brain
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4 Driver mental state – indicators, methods and technology 

for real-time monitoring  

The term ‘mental state’ refers to the cognitive state (attention, fatigue, workload) but also the 

emotional state of a driver. The ‘dichotomisation of the mind’ into cognitive and emotional 

components of the mind facilitates operating with the terms. However, this division is not as 

definitive as it may seem, and many complex interrelations exist. Emotions, for example, can 

shift our attention and be distracting (Chan & Singhal, 2015; Cunningham & Regan, 2017; 

Lafont et al., 2018; Zimasa et al., 2019). The drivers’ mental state can be classified on a 

spectrum of arousal states (low, passive, ideal, hyper), which can be measured with the help 

of physiological indicators (Lohani et al., 2019). Within the i-DREAMS project, the single 

cognitive or emotional mental states and, as well as the source of an emerging risk, are of 

importance since interventions in real time or after driving will be targeted at specific triggers. 

Therefore, the review of the state of the art of measuring the driver’s mental state was 

structured by the distinct topics of attention and distraction, fatigue and sleepiness as well as 

emotions and stress.  

 

4.1 Attention and distraction  

 

4.1.1 Definitions & measurements 

According to Cunningham and Regan (2008), distraction can be defined as “a diversion of 

attention away from activities critical for safe driving toward a competing activity”. Following 

that definition, the review focused on identifying the ways in which distraction can be monitored 

during trips or experiments rather than the relationship between road safety and distraction. 

For example, in Cunningham and Regan (2008) and Papantoniou et al. (2017) critical driving 

parameters on distraction are explicitly described. Among those parameters lateral and 

longitudinal control measurements, surrogate safety measures (e.g. reaction times, gap 

acceptances) and eye or workload measures are deemed to be the most crucial to identify 

driver distraction. However, in those two frequently cited studies, the aim is describing the 

effect or distraction on safety performance parameters, without accurately pointing out the 

monitoring procedure of distinguishing between attentive and distracted driving.  

 

4.1.2 Review of studies 

Literature was searched within popular scientific databases such as Scopus, ScienceDirect 

and Google Scholar. The key words used, as well as the number of screened and included 

papers are provided in Table 3. 

 

Table 3: Key words, screened and included papers per factor analysed 

Factor  Key words (without word stem variations) Screened papers Included papers 

Distraction 
"distraction"  OR  "distracted"  OR  "inattention"  OR   

"inattentive"  AND  "driver monitoring"  OR  "driver measure"  
417 32 

 

When reviewing the 32 identified studies on monitoring driver distraction, following the 

aforementioned focus areas, an observable distinction was that very few papers considered 

all the major types of distraction (i.e. visual, cognitive and manual) as described in Cunningham 
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and Regan (2018) and Costa et al. (2019). The majority of the studies (17 out of 32) were 

concerned solely with visual distraction, probably because of the advances in eye tracking and 

camera technologies, while 6 were concerned specifically with cognitive distraction and only 4 

with manual distraction. With regards to visual distraction, the phenomenon is usually identified 

through saccades (Costa et al., 2019), glances and blinks (Seppelt et al., 2017; Dumitru et al., 

2018; Li and Seignez, 2018; Bakhit et al., 2019; Costa et al., 2019; Kanaan et al., 2019), or 

general eye position tracking (Hammoud et al., 2008; Botta et al., 2019). Two of the most 

crucial indicator for detecting distraction and inattention have found to be PERCLOS 

(percentage of time that the eyelid covers 80% or more of the pupil) and PERLOOK 

(percentage of time spent not looking ahead during a certain time interval) with a value of more 

than 35% indicating distraction (Costa et al., 2019). Glance duration has also been 

demonstrated in most of the studies on visual distraction as an important indicator. In Seppelt 

et al. (2017) it was found that distracted drivers were identified during near crashes with an 

average glance duration of 12.39 seconds (SD 8.02), and 9.58 seconds (s.d. 5.08) during 

crashes, when observations were made 10-25 seconds before incidents. In Botta et al. (2019) 

2 seconds was the critical value of glances away from the road, which was also validated in 

Kanaan et al. (2019).  

Regardless of eye metrics, head position monitoring has also been extensively utilized in order 

to identify general distraction scenarios or has been linked with visual and manual distraction. 

More specifically, in Huang et al. (2019) head turns longer than 5 seconds in duration are 

considered a precursor of distraction. Similarly in Hammoud et al. (2008) a head movement of 

20 degrees or more to the left or right, has been also linked with distracted driving, which 

comes in agreement with the thresholds indicated by Ali and Hassan (2018).  

A different approach was followed in Botta et al. (2019) and McDonald et al. (2019), where 

driver kinematics were used post-trip to distinguish between distracted and undistracted 

drivers. Features utilized for that distinction include the standard deviation of lane offset and 

the steering quartiles in McDonald et al. (2019) as well as speed, yaw, steering rate values 

and road geometry in Botta et al. (2019). However, in both studies no thresholds for detecting 

distraction are mentioned.  

Regarding technologies used to monitor distraction in real-time, most of the studies utilized 

eye trackers or eye movement encoders (e.g. Hammoud et al., 2008; Dumitru et al., 2018; 

Botta et al., 2019; Costa et al., 2019), or analysed video and image feeds from cameras (Hari 

and Sankaran, 2017; Ali and Hassan, 2018; Li and Seignez, 2018; Koohestani et al., 2019). 

Less frequent approaches include EEG (Costa et al., 2019; Khan and Lee, 2019), hand 

sensors and magnetic glasses (Huang et al., 2019). Table 5.2 describes the indicators, 

methods and technologies that were developed to monitor real-time distraction and inattention.  

 

4.1.3 Transferability to other modes 

Attention monitoring systems, including head, gaze, eye trackers, CAN bus integration with a 

lane tracker for measurement of latitudinal control performance, dashboard cameras, 

smartphone applications, wearables, and radars were used to investigate distraction. Non-

intrusive methods were strongly preferred for monitoring distraction, and vision-based systems 

have appeared to be attractive for drivers. It was revealed that all methods, technological 

devices and systems mentioned above, which measure driver distraction or attention, can be 

easily transferred to all transport modes, such as cars, trains, buses or trucks and there was 

no mode-specific technology. Hence, it can be concluded that attention monitoring systems 

are easily transferrable to all four modes of i-DREAMS.  
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4.1.4 Conclusions and recommendations 

A thorough literature review was carried out in order to identify which indicators can be used 

to detect, monitor or measure driver's distraction or attention. In most cases, driver distraction 

was measured in terms of its impact to driver attention, driver behaviour and driver accident 

risk (Papantoniou et al., 2017). Real time eye tracking systems, radars for physiological 

measurements and cameras were found to be the most frequent devices to monitor and detect 

driver's distraction. On the other hand, less frequent approaches included EEG, hand magnetic 

rings and magnetic glasses.  

Among all trackable parameters, lateral and longitudinal control measurements, surrogate 

safety measures such as reaction times or gap acceptances, and eye or workload measures 

are deemed to be the most crucial to identify driver distraction. However, the diversity in the 

measures used, in combination with the diversity in the design of the experiments (i.e. road 

and traffic factors examined), often complicated the synthesis of the results, especially for less 

commonly examined distraction factors. 

With regards to the i-DREAMS system, it is very important to identify the way of monitoring 

driver distraction or inattention. A dashboard camera, which can continuously record eye or 

workload measures should prove beneficial for the project. In addition, advanced driver-

assistance systems like Mobileye, which utilize a forward-facing camera and provides 

warnings for collision prevention and mitigation, as well as a smartphone application which can 

provide measures such as lateral and longitudinal acceleration can be utilized for surrogate 

safety measures capturing observed distraction and inattention. In that way, the most crucial 

parameters indicating distraction can be efficiently captured in real-time. To measure 

distraction due to mobile phone use, smartphone sensors which detect the movement of the 

phone can also be beneficial and are non-intrusive

https://en.wikipedia.org/wiki/Traffic_collision
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4.2 Fatigue 

Fatigue and sleepiness are significant risk factors for road traffic accidents, injuries and deaths 

within various transport operations (Williamson et al., 2011; Bioulac et al., 2017; Zhang, Yan, 

Wu, & Qiu, 2014). Driver sleepiness is thought to contribute to approximately 15-30% of road 

traffic crashes globally (Connor et al., 2002; Horne & Reyner, 1995; Phillip et al., 2014). Certain 

features such as increased subjective sleepiness, changes to physiological state, performance 

decrements, reduced alertness and difficulties sustaining attention can be used to categorise 

fatigue (Williamson, 2007), despite its various definitions. Several factors can impact fatigue 

and sleepiness, including insufficient or lack of sleep, prolonged wakefulness, circadian rhythm 

disruptions and sleep disorders (Zhang et al., 2014), as well as time spent on task (Williamson, 

2007).  

One of the main causes of fatigue related transport incidents are attentional lapses due to 

insufficient sleep (Philip & Åkerstedt, 2006; Philip et al., 2005; Schwarz et al., 2016). Driver 

sleepiness results in decrements in performance, increased reaction time, impaired attention 

and loss of conscious awareness whilst behind the wheel (Williamson et al., 2011). Frequently 

observed driving impairments due to fatigue and sleepiness also include higher frequency of 

lane crossings (Hallvig, Anund, Fors, Kecklund & Åkerstedt, 2014), reductions in hazard 

perception (Smith, Horswill, Chambers & Wetton, 2009) and increased distractibility (Anderson 

& Horne, 2013). Fatigue and sleepiness impair performance substantially, with research 

indicating that following 17h of wakefulness (Dawson & Reid, 1997), or two hours of nocturnal 

driving (Verster, Taillard, Sagaspe, Olivier & Phillip, 2011), driving performance is the 

equivalent to a BAC of 0.05% For reference, the legal driving limit BAC is 0.08% for the UK 

and 0.05% in most EU countries and Scotland.  

Links between driving incidents and time of day have been highlighted. The highest number of 

incidents and accidents occur at times when alertness is reduced due to the body’s circadian 

rhythms (Åkerstedt, Connor, Gray & Kecklund, 2008; Connor et al., 2002; Garbarino, Lino, 

Beelke, Carli, & Ferrillo, 2001; Horne & Reyner, 1995; Milter et al., 1988). The lowest points of 

these rhythms typically occur between 02:00 and 04:00, and then a smaller dip in the afternoon 

approximately between 13:00 and 15:00. At these times, the drive to sleep would be the 

strongest.    

It could be considered that professional drivers are more capable of staying alert and vigilant 

compared to non-professional, private drivers. However, this is not the case (Anund, Ahlström, 

Fors & Åkerstedt, 2018). Certain aspects of professional driving can be considered risk factors 

for fatigue, for example, sedentary occupation, restricted seating, long driving hours, irregular 

shift patterns, and a unique work environment (Bunn. Slavova, Struttmann & Browning, 2005; 

Chaiard, Deeluea, Suksatit & Songkham, 2019; Öz, Özkan & Lajunen, 2010). Despite 

professional drivers reporting that they subjectively feel more alert, objective measures such 

as increased lane crossings indicated greater levels of sleepiness compared to non-

professional drivers (Anund et al., 2018).  

However, measuring the effects of sleepiness can be difficult. The impact of sleep loss on 

performance shows large inter-individual differences. Studies have reported large differences 

between individuals even in known risk groups (Ingre, Åkerstedt, Peters, Anund & Kecklund, 

2006). In addition, differences between sleepy and alert drivers can sometimes be very small 

or non-significant, and sleep research employs a range of different methodologies, making 

comparisons between studies difficult (Talbot & Filtness, 2017).  

 

4.2.1 Definitions 

Within occupational settings and within literature, the terms ‘fatigue’ and ‘sleepiness’ can often 

be used interchangeably, despite the causal factors contributing to state of the driver may differ 



D2.1 State of the art on measuring driver state and task complexity in real-time 

©i-DREAMS, 2020  Page 31 of 143 

(May & Baldwin, 2009). It is likely that the two states are interlinked, which can make them 

difficult to isolate them from one another. They are also likely influenced by other mental states, 

such as stress. In the transportation industry the term ‘fatigue’ is generally used, however, 

within scientific literature, fatigue and sleepiness have distinct definitions. Sleepiness is defined 

as the physiological urge to fall asleep, usually resulting from sleep loss (Dement & Carskadon, 

1982). This can also be referred to as drowsiness or tiredness. However, fatigue can be more 

difficult to define, despite being a related concept to sleepiness. It has previously been defined 

as the inability to continue a task which has been going on too long (Bartley & Chute, 1947), 

and can be due to factors such as monotony, workload (including underload and overload) and 

task duration (Di Milia et al., 2011). Despite the differences in definitions, sleepiness and 

fatigue impair driver attention, vigilance and performance. 

 

4.2.2 Measuring fatigue and sleepiness 

Within the scientific literature, fatigue is measured in a variety of different ways. It can be 

assessed in terms of variables associated with sleep habits, including sleep duration, sleep 

quality, and prior wakefulness, as well as variables related to assessing how sleepy an 

individual is while driving, such as subjective and observed sleepiness and sleep events. Self-

report assessments can measure fatigue either by asking direct questions relating to sleep, or 

by using an established tool. Subjective tools can be used to measure state sleepiness (how 

sleepy an individual is at a particular point), or trait sleepiness (how sleepy an individual is in 

general). Objectively, sleepiness at the wheel can also be studied by measuring and monitoring 

physical signs of sleepiness. As such, a range of sleepiness detection measures have been 

developed to assess sleepiness, both physiological measures, vehicle and behavioural 

measures, each with different strengths and weaknesses.  

 

Brain activity 

EEG is often considered the gold standard method of measuring sleepiness in the laboratory 

or in simulator settings. EEG captures changes in neuronal activity in the brain, indicating 

levels of sleepiness. EEG can measure sleepiness due to homeostatic and circadian 

processes passively, continuously and objectively. The focus of EEG analysis is on the 

dominant brain wave frequencies present in the EEG. The spectral power or strength of the 

EEG signal can gradually move from the beta band (12-30 Hz), to the alpha band (8-12 Hz), 

and through the theta band (4-8 Hz) as sleepiness increases (Aeschbach et al., 1997). The 

delta band (1-4 Hz) follows after falling asleep (Rechtschaffen & Kales, 1968). Microsleep 

episodes can also be detected through EEG. Previously EEG has been used to detect 

sleepiness in train drivers (e.g. Torsvall & Åkersted, 1987), bus drivers (e.g. Anund, Fors, 

Ihlstöm & Kecklund, 2018) in car simulators (e.g. Åkerstedt et al., 2013; Barua, Ahmed, 

Ahlström & Begum, 2019; Hallvig et al., 2013) and in real-road driving (e.g. Hallvig et al., 2013; 

2014; Liang et al., 2019).   

However, EEG is usually measured using electrodes fixed to the scalp, which may not be 

realistic in terms of real time driver state monitoring. Attaching electrodes can take time, as 

well as being subject to signal loss or loss of electrical contact. More recently, dry electrodes 

and headbands with embedded electrodes have been developed (e.g. Lees et al., 2018; Wang 

et al., 2018; Zhang et al., 2018), although these measures may need further validation. EEG 

also appears not to show the longer-term build-up of chronic sleep restriction (Van Dongen et 

al., 2003b). EEG can be used to detect short term changes in sleepiness and microsleeps and 

actual instances of falling asleep, however the latter two occur rather late in terms of sleepiness 

development, which may be too late in terms of safety and driving. Efforts have been made to 
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develop EEG based sleepiness indicators, however, their predictive value is too low for use in 

driver sleepiness devices (Åkerstedt et al., 2010).  

 

Ocular measures 

Ocular indicators are popular measures used to monitor driver sleepiness. It has been shown 

that the homeostatic and circadian processes which influences sleepiness cause changes in 

ocular variables (Ftouni et al., 2013; Jackson et al., 2016). Many ocular measures are 

associated with sleepiness including blink frequency and duration, eyelid closure, pupil 

dimension and slow eye movement (Ahlström, Anund, Fors & Åkerstedt, 2018; Aidman et al., 

2018; Barua et al., 2019; Cori, Anderson, Soleimanloo, Jackson & Howard, 2019; Filtness et 

al., 2014; Ftouni et al., 2013).  

EOG can be used to detect changes in ocular measures, using electrodes which are attached 

near the eyes to record electrical activity. This provides a passive, continuous and objective 

method for recording changes in eye movements and has been shown to correlate with 

changes in EEG (Torsvall & Åkerstedt, 1987; Ftouni et al., 2013). In terms of driving 

performance, EOG has been associated with a range of indicators including lane drifting 

(Åkerstedt et al., 2013; Ingre et al., 2006), and hitting the rumble strip (Anund, Kecklund, 

Vadeby, Hjälmdahl & Åkerstedt, 2008). Similar to EEG, EOG electrodes can be difficult to use 

in terms of a real time driver state monitoring device and can be subject to movement and 

interference and data loss. EOG measures are also not reliably consistent with other EOG 

measures, even in the same person (Dinges & Grace, 1998). 

Cameras can also be used to detect changes in ocular parameters, and typically focus on 

changes in percentage of eyelid closure (PERCLOS), which has the highest reliability and 

predictive validity (Sparrow et al., 2019). As it doesn’t rely on electrodes, it is also less intrusive 

and potentially easier to incorporate into a driver state detection monitor. However, in a 

commercial and operational sense, it also raises issues relating to the recording of individuals 

and can be met with resistance. There may be the issue of head movements, and poor lighting 

affecting accuracy. Measures of ocular indicators have also been incorporated into glasses 

(Ftouni et al., 2013; He et al., 2017; Ma, Gu, Jia, Yao & Chang, 2018), however this requires 

the driver to tolerate wearing the device, which could interfere with the use of prescription 

glasses. 

Overall, using ocular measures as an indicator of sleepiness is useful to detect high levels of 

sleepiness (Anderson, Chang, Sullivan, Ronda & Czeisler, 2013), and is one of the more 

popular measures being incorporated into driver detection technology. In terms of ocular 

parameters, blink duration and PERCLOS have previously been shown to be the most robust 

(Cori et al., 2019). However, research indicates that state detection algorithms need to take 

other factors into account, for example traffic and surrounding road users, and that algorithms 

that are estimating a drivers state may need to be personalised (Ahlström, Anund, & Kjellman, 

2018).  

 

Cardiac measures 

Cardiac activity can be affected by sleepiness. Heart rate and heart rate variability (HRV) are 

indicators that can be used to capture any changes in this activity following sleepiness. 

Previously, ECG recordings have been used to detect sleepiness, using electrodes attached 

to the body (e.g. Buendia et al., 2019; Vicente et al., 2016), however the use of electrodes may 

be difficult in terms of applicability to the real world. Even though research has noted that 

circadian processes appear to influence cardiac measures systematically (Burgess, Trinder, 

Kim & Luke, 1997), there have been inconsistent findings in terms of the homeostatic process 

(Holmes, Burgess & Dawson, 2002; Zhong et al., 2005). There is also the issue of heart rate 
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being affected by other influences, for example stress (Thayer, Ahs, Frerikson, Sollers & 

Wager, 2012). It may be that in controlled environments HRV predicts impairments due to 

sleepiness, although a more recent study analysed motorway driving data and found 

associations between heart rate, HRV and subjective sleepiness (Beundia et al., 2019), 

indicating promise as a method of sleepiness detection.  

Currently, ECG recordings are not widely used in operational settings to measure sleepiness. 

However, using heart rate signal as a sleepiness indicator may create possibilities of non-

intrusive measurement devices being used to detect driver sleepiness. Rather than ECG 

electrodes, heart rate could be measured by steering wheel sensors, wristbands or seat 

sensors (Ariansyah, Caruso, Ruscio & Bordegoni, 2018; Balasubramanian & Bhardwaj, 2018; 

Macias et al., 2013; Wartzek et al., 2011).  

It is important that effective pre-processing algorithms are utilised in order to obtain good 

estimations of HRV indicators and detecting and removing outliers is essential (Lippman et al., 

1994), as they may lead to biased results. The choice of spectral transformation method 

applied to HRV indices may also have a large influence (Clifford & Tarassenko, 2005). 

Therefore, before applying algorithms for sleepiness detection based on HRV analysis, the 

impact of different pre-processing methods on sleepiness assessment needs to be considered 

(Forcolin et al., 2018).  

 

Performance measures 

Performance measures can also be a good indicator of sleepiness. Sleepiness can result in 

lapses of attention, which become more frequent and last for longer as sleepiness increases 

(Doran, Van Dongen & Dinges, 2001). Vigilance tasks are accurate and sensitive ways to 

measure impairments in performance, focusing on lapses of attention (Lim & Dinges, 2008). 

Lapses of attention have also been associated with microsleeps and correlate with PERCLOS 

(Dinges & Grace, 1998). However, using such tasks such as the Psychomotor Vigilance Test 

(PVT), can be unrealistic in terms of operational settings, usually requiring the individual to 

concentrate on the test for approximately 10 minutes, with repeated measures being required. 

Shorter versions on the PVT have been developed, however this would still require the 

individual to perform the test for three minutes, which drivers would be unable to do while 

driving.  

Driving performance is a useful indicator of sleepiness. A variety of indicators can be recorded 

through sensors, providing information relating to acceleration, steering wheel movement, and 

braking. The benefit of measuring driving performance is that it requires no additional input 

from the driver and is unobtrusive. Several indicators have been shown to be sensitive to the 

effects of sleepiness, including lane deviation, speed variability, steering wheel movements 

and following distance (e.g. Anund et al., 2008; Forsman, Vila, Short, Mott & Van Dongen, 

2013; Ingre et al., 2006; Otmani, Pebayle, Roge,& Muzet, 2005). However, in terms of 

sensitivity, driving performance measures of sleepiness can vary considerably, and they may 

indicate increased sleepiness when safety is already an issue. Many of these measures can 

also be impacted by other factors, such as weather and traffic. Despite these limitations, 

several car manufacturers have developed systems that incorporate several of these 

measures to detect sleepiness.  

 

Subjective measures 

The question of whether individuals are aware of their sleepiness levels has been debated, 

with laboratory evidence indicating that when asked, drivers can give responses associated 

with objective sleepiness (e.g. Åkerstedt et al., 2013; Watling et al., 2016b). However, there 

are questions about whether drivers acknowledge the risks associated with being sleepy while 
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driving (Watling et al., 2016a), and whether if drivers are unprompted, are they as aware of 

their sleepiness. Drivers including professional drivers also face additional pressures such as 

schedules or the desire to reach the destination, which may override their awareness of 

sleepiness. However, in many laboratory and field studies, self-report measures have been 

used effectively.  

The most extensively used self-report measure is the Karolinska Sleepiness Scale (KSS; 

Åkerstedt & Gillberg, 1990), a 9-point, one dimensional scale ranging from 1 – extremely alert, 

to 9 – very sleepy, great effort to stay awake, fighting sleep. The KSS has been validated 

against EEG variables and performance (Kaida et al., 2006; Sagaspe et al., 2008), and is 

considered a reliable tool for evaluating sleepiness, both in a laboratory environment and in 

field studies (Åkerstedt, Anund, Axelsson & Kecklund, 2014). However, there is the question 

of what level is acceptable to drive at? There is an exponential relationship between the KSS 

and physiological/behavioural measures (e.g. eye strain, slow eye movements, blink durations 

and lateral control). KSS scores of less than 7 show little signs of sleepiness in physiological 

and behavioural indicators, whereas level 8 and particularly level 9 show a strong increase of 

occurrence in these measures, with KSS 8 and 9 being related to crash risk and instances of 

sleep intrusions as shown by EEG and EOG (Åkerstedt et al., 2014). In terms of driving and 

safety, this is too late and driving at this level is dangerous.  

Situational context may also be important in terms of subjective sleepiness. Ratings of 

sleepiness can vary depending on the preceding context (Åkerstedt et al., 2014). While time 

on task can induce sleepiness, a boring, low stimulus environment can also increase subjective 

sleepiness, for example a train driver driving through long stretches of the same landscape 

(Ingre et al., 2004). Manual work may result in lower reported sleepiness levels due to the 

physical nature of the work, compared to more sedentary, monotonous work, for example in 

the transportation industry.   

The KSS shows good correspondence with high levels of sleepiness as well as with 

performance and physiological measures at group level, however this may not be the case at 

an individual level (Sparrow et al., 2016). In terms of utilising subjective scales in an operational 

context, this can be difficult, as subjective responses can be influenced and manipulated due 

to social pressure and demand characteristics.  

 

4.2.3 Review of studies 

A systematic search of the scientific literature was conducted in July 2019. The search was 

conducted in three databases (Web of Science, SCOPUS, and PubMed). Search terms were 

generated for each of the key search phrases – fatigue (related to both performance and 

physiological fatigue), the mode of transport, and the study design. The exact search terms 

used are shown in Table 4.   

Table 4: Terms used for systematic search of the literature 

Key search 
phrase 

Search terms 

Fatigue "fatigue*" OR “sleep*” OR “tired*” OR “drowsy” OR “drowsiness” OR “alert*” OR “monoton*” 
OR “mental* fatigue*” OR “weariness” OR “bored*” OR “time on task” OR “mental* tired*” 

Performance 
measures 

"driving ability*" OR "driving behav*" OR "lane crossing*" OR "lane maintenance" OR "lane 
deviat*" OR "steer* movement*" OR “steering wheel variability” OR "speed*" OR "decision 
making" OR "situational aware*" OR "miss* traffic signal*" OR "miss* 
check*" OR "longitudinal move*" OR "lateral move*" OR "event 
detect*" OR "SPAD*" OR "subjective sleep*" OR "collision avoid* warning 
system*" OR "pedal use" OR "violation" OR “secondary task engagement” OR “eyes off 
road” OR “eyes off target” OR “braking” OR “harsh braking” OR “headway” 
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Physiological 
measures 

"blink rate" OR "heart rate" OR "EEG" OR "eye* 
clos*" OR "PERCLOS" OR "yawn*" OR "head nod*" OR "eye move*" OR "heart rate 
variability" OR "ECG" OR "eye track*" OR "pulse" OR "galvanic skin 
respon*" OR "fNIRS" OR "EMG" OR "respiratory" OR "blood pressure" OR "skin 
conduct*" OR "cortical activity" OR "biochemical mark*" OR "driver monitoring" OR "driver 
state monitoring" OR “electrodermal activity” 

Mode of 
transport 

"car" OR "bus" OR "coach" OR "truck*" OR "lorry" OR "train" OR "tram" OR "rail*" OR "drive
r" OR "professional driver" OR "commercial driver" OR "vehicle" OR “automobile” 

Study design  "simulat*" OR "real-world driv*" OR "instrumented vehicle*" OR "natural* driving 
stud*" OR "field operational test*" OR "field operational trail*" 

 

The key terms were then entered into the databases in combination: “Fatigue” AND 

(“Performance” Or “Physiological”) And “Mode” AND “Study”, with the following inclusion 

criteria: 

 Published between 2009-2019 

 Search term included in title, abstract or key words 

 Language as English 

 Document type as journal or review 

 Source type journals 

The search was conducted in the three databases, the results were downloaded into the 

reference manager Mendeley, and deduplicated. The results were then screened by title, and 

then by abstract. Additional key references were also included. Table 5 details the screening 

process and number of hits. 

Table 5: Final systematic search figures 

Search  Documents 

Web of Science 772 

SCOPUS 770 

PubMed 3 

Combined 1545 

After deduplication 1063 

After initial screening by title 282 

After abstract screening 177 

Additional key references 213 

Final screening  144 

 

Due to the volume of the literature, this is not a comprehensive review of the literature, but 

rather a summary of how fatigue has been, and is currently being, measured and/or monitored 

in relation to driving. A summary table of relevant literature is available in the annex.  

 

4.2.4 Conclusion for measuring fatigue and sleepiness in i-DREAMS 

Overall, the majority of studies within the literature focus on ‘sleepiness’; that is when a driver 

is sleepy, what indicators can be used to detect, monitor, or measure this state, and usually in 

relation to car drivers. In addition, most of the research has been conducted in simulators. This 

is mainly due to the ethical issue of driving on real roads with sleepy drivers and the associated 

safety risks, as well as the control factor in experimental terms. However, it should be noted 

that simulator studies are associated with higher levels of subjective and physiological 
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sleepiness in comparison to real driving (Fors, Ahlström & Anund, 2018). The relative validity 

of simulators is acceptable for many variables, however in absolute terms, there is an increase 

in sleepiness levels in simulators (Hallvig et al., 2013). 

In terms of measurements and indicators suitable for measuring fatigue and sleepiness in a 

driver context, the literature provides some useful insights. HRV shows promise and can be 

developed into unobtrusive measures, however this method hasn’t been used much in 

operational settings and may need further development and validation. Heart rate and HRV 

can also be influenced by stress, and individuals have been shown to have different reactions 

to sleepiness as measured by HRV (Abtahi et al., 2017). The majority of commercial fatigue 

detection technology currently utilises ocular measures, and research shows blink duration 

and PERCLOS to be the most robust indicators. It is important that in terms of driver state 

detection and estimation algorithms, other contextual factors such as traffic and other road 

users are taken into consideration, and that the algorithms may need to be personalised to the 

driver (Ahlström, Anund, & Kjellman, 2018). Similar to EEG, ocular measures may also be 

limited in potential for lower levels of sleepiness. EEG can be difficult and unrealistic to 

implement in terms of driver state monitoring, much like vigilance performance tasks, which 

require driver involvement and attention, and are not suitable to be used whilst driving. Finally, 

measures of driving performance offer high validity in an operational context, however 

indicators can be influenced by other factors, and may indicate levels of sleepiness too late, 

that is when an individual is already in an unsafe state to drive.  

Most measures appear to be sensitive to variations in levels of wakefulness, however they all 

suffer from limitations, for example inter-individual differences (Ingre et al., 2006), as well as 

being influenced by external factors possibly not related to sleepiness. Therefore, it is important 

to ensure that the i-DREAMS system includes a context component in addition to the 

monitoring component. 

In terms of individual differences, research has shown variability among individuals as to the 

effects of sleepiness, which potentially has implications for fatigue and sleepiness monitoring 

devices. Assessing changes of individuals over time may not be too problematic, however 

issues may become apparent if a measure is being used to compare against a set threshold 

(Van Dongen & Belenky, 2012), or between individuals.    

It was apparent from the literature that several studies used a combination of measures and 

indicators to detect sleepiness. Sleepiness is a complex, multidimensional state, and therefore 

it may be difficult to assess by one single indicator; it has previously been noted that the 

reliability of detection systems may be improved by combining and incorporating multiple 

measures (Balkin et al., 2011). This therefore should be taken into consideration when 

designing the fatigue and sleepiness detection component of the i-DREAMS system. 

 

4.2.5 Conclusions and recommendations 

In relation to suitable measures of sleepiness to be incorporated into the i-DREAMS system, 

it is recommended that two measures are utilised. The literature indicates that all measures 

currently used to monitor and detect sleepiness have benefits and drawbacks to them, and 

that further research or validation may need to be conducted, particularly in relation to inter-

individual variability. Utilising multiple measures and indicators could help to improve the 

reliability of sleepiness detection.   

It is apparent from the literature, that eye tracking is the most commonly used measure of 

sleepiness in experimental, and also commercial, sleepiness detection. Heart rate and heart 

rate variability also shows potential and can be developed as a minimally invasive technique. 

Therefore, of the reviewed measures and indicators, it is recommended that measures of eye 
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tracking (blink rate and PERCLOS have been shown to be the most robust) and heart rate are 

incorporated into the i-DREAMS system to potentially monitor and detect sleepiness.  

 

4.3 Emotions and related constructs  

Other than the topic of distraction, emotion research has long been neglected in road safety 

as well as in human factor engineering and is only trending since the early 2000s (Jeon, 2017). 

However, technology aiming at the detection of emotions is progressing rapidly. The tools are 

becoming simpler and more widespread. Eichhorn and Pilgerstorfer (2017) come to the 

conclusion that drivers experiencing emotions (e.g. anger) while driving are slightly more at 

risk in traffic, which is supporting the relevance of emotions in the road safety domain.  

However, the matter is more complicated than that. First of all, “emotion”, “arousal”, “mood”, 

“affect” or “stress” are distinct constructs (although there are overlaps) but are often used as 

one single construct which is seen as complementary and opposite to cognition (Jeon, 2017). 

And secondly, there is no agreed upon standard definition of “emotions” as a psychological 

construct.  

 

4.3.1 Definitions 

In psychology, ‘emotion’ is often used as an umbrella term for an integrated, complex reaction 

of the organism to a situation or stimulus which can be interpreted as positive or negative 

(Maderthaner, 2008). Damasio (2001) sees emotions as the physiological response of the 

nervous system to a stimulus from inside or outside of the body. Opposed to this rather brief 

physiological reaction, ‘feeling’ is the subjective interpretation and experience of that reaction. 

The concept of ‘affect’ is a short-term and undifferentiated emotion, while ‘mood’ can be seen 

as longer lasting but weaker or less pronounced (Maderthaner, 2008). 

Constructs that are clearly different from emotions and feelings are ‘stress’ and ‘aggression’. 

However, at times those constructs are used in the context of emotion research without paying 

too much attention to clear-cut definitions. Consequently, aggression and stress were also 

included in this work. ‘Aggression’ can be defined as the motivation to physiologically or 

psychologically harm others (or objects) and is a reaction to frustration or anger (Maderthaner, 

2008; Shinar, 1998). According to Butler (1993), ‘stress’ is either a result of pressure, a 

response to noxious or aversive stimuli or a dynamic process. 

What many researchers agree upon, is that emotions basically have two qualities: valence, 

which indicates whether an emotion is perceived as positive or negative, and arousal, which 

indicates how calming or exiting the stimulus is perceived (Eichhorn & Pilgerstorfer, 2017).  

The ‘circumplex model of affect’ hypothesizes that two different neurophysiological systems 

are responsible for different neural sensations which are cognitively interpreted. One 

neurophysiological system is related to valence and the other to arousal. Each interpreted 

emotion can be located in a two-dimensional circular space representing arousal (vertical axis) 

and valence (horizontal axis) as depicted in Figure 3. For example, fear or anxiety are 

positioned in the top left quadrant with high arousal and negative valence. The four broad 

categories (quadrants in the figure), however, do not have very clear boundaries. The 

combination of high arousal and high valence can be called ‘excitement’, low arousal and high 

valence ‘serenity’, high arousal and low valence ‘distress’ and low arousal and low valence 

‘depression’ (Widen & Russell, 2008). A similar two-dimensional concept was introduced by 

Watson and Tellegen (1985).  

A second prominent – and somewhat competing – school of emotion theories is a categorial 

approach to emotions as opposed to the aforementioned dimensional one. Ekman (1992, 

quoted by Balters & Steinert, 2015) proposed ‘basic emotions’, a set of categories of distinct 
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emotions which are seen as universal. These basic emotions are happiness, surprise, anger, 

sadness, disgust and fear. While either of the two approaches can be argued for, it depends 

on the research question as to which is ‘the right one’.  

 
Figure 3: ‘Circumplex model of affect’ with the horizontal axis representing valence and the vertical representing 

arousal (Posner et al., 2005, p.716) 

 

Lagarde et al. (2004) researched the impact of ‘emotional stress’ due to separation or divorce 

in a cohort study and conclude that these kind of life events are associated with an increase in 

serious road accidents. Another study similarly found that stress increases at-fault crash risk 

significantly. Both personal stress triggers (family finances, sickness, work stress etc.) as well 

as driving context induced stress (traffic density, weather condition, road layout etc.) were 

considered (Legree et al., 2003). Thus, stress can be induced from non-driving related events 

and driving itself. Stress is, furthermore, associated with other discussed constructs such as 

facilitating aggression (e.g. Maderthaner, 2008). Furthermore, time pressure is a common 

trigger of stress, which can be especially relevant for professional drivers.  

 

4.3.2 Measuring emotions  

On a broad level, three classes of emotion measures can be distinguished: subjective 

measures where individuals assess and communicate their own emotional state, behavioural 

measures such as facial expressions or posture and physiological measures which are 

assessing changes in the autonomous nervous system (Balters & Steinert, 2015). Since i-

DREAMS aims at objectively measuring the individual mental state while driving in real time, 

subjective measures are not further explored. 

Regarding physiological measures, the autonomous nervous system plays a significant role 

since emotional reactions have autonomic specificity (distinct change in the autonomous 

nervous system). There is no consensus, however, on autonomic specificity of categories of 

emotions (e.g. fear or happiness). Consequently, a universal and reliable concept of 

interpreting physiological signals is missing. Data collection should be based on clear 

definitions of emotion or categories of emotions and should be interpreted with care (Balters & 

Steinert, 2015). Among the behavioural measures, voice characteristics such as amplitude and 

pitch can be used to detect emotions. Furthermore, facial expression features and body 

posture are used to infer emotional states. 
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4.3.3 Impact of emotions on driving performance 

Emotions can have detrimental as well as beneficial effects on the driver and the driving task. 

While fear is to a certain extent a prerequisite to adapt one’s own driving behaviour to a 

manageable scale (see also risk control theory by Summala, 1988), usually emotions are 

studied in view of the potential increase of risk. Some of the evidence regarding risk increasing 

the impact of emotions is discussed below. 

In the large-scale naturalistic driving study SHRP 2, Dingus et al. (2016) observed a 9.8 times 

higher crash risk while driving in an emotionally elevated state (including anger, sadness, 

crying, and/or emotional agitation) compared to normal driving (prevalence of about 0.2% of 

the total driving time). Studies based on the self-reported accident history of drivers show 

inconsistent results. Regarding the influence on safety performance indicators, Cyders & Smith 

(2008) find that emotions and risky behaviours correlate with drivers being more prone to rash 

actions.  

Negative emotions in general (e.g. anger, fear) are assumed to potentially impair drivers, for 

example through a decrease of the available attentional resources due to an increase of 

emotion related thoughts (Ellis & Moore, 1999). Then again, positive emotions such as 

happiness or joy are more frequently discussed in view of their impact on driving behaviour as 

well (Cunningham & Regan, 2017). 

A meta-analysis by Nesbit et al., 2007 indicated a relationship between aggressive driving and 

accidents as well as between anger and accidents, however, the effect is rather small. 

However, there are also studies reporting no association of aggression and anger with crash 

risk (Eichhorn & Pilgerstorfer, 2017). Anger seems a well-studied construct that is associated 

with speeding and other risk behaviours (Eichhorn & Pilgerstorfer, 2007). Furthermore, anger 

is associated with a more superficial processing of potential hazardous information and a 

longer time for corrective actions (Stephens et al., 2013). 

Similarly, attentional decrements due to anxiety were identified in previous research. High 

levels of state anxiety were found to cause distraction by irrelevant stimuli and attentional 

narrowing (Gotardi et al., 2018; Jeon et al., 2015).  

 

4.3.4 Review of studies 

In order to draw conclusions on the state-of-the-art emotion measurement techniques, a 

systematic search of the scientific literature was carried out mid 2019 using the search terms 

documented in Table 6. 

Table 6: Search terms for systematic literature search on measuring emotions. 

Key terms Search terms 

Emotion “emotion*” OR “ang*” OR “rage*” OR “upset” OR “worr*” OR “self-regulat*” OR “anxi*” OR 
“panic*” OR “happ*” OR “excite*” OR “aggressi*” OR “arous*” OR “pressure” OR “affect*” OR 
“feel*” OR “fear” OR “nervous” OR “stress*” OR “*joy*” OR “pleasure” OR “amuse*” OR “grief” 
OR “surprise*” OR “sad*” OR “euphor*” OR “distress*” OR “depress*” 

Performance 
measures 

“perform*” OR “driv* ability*” OR “driv* behavio*” OR “capability” OR “lane deviation” OR 
“lane keeping” OR “steering*” OR “speed*” OR “decision*” OR “situational awareness” OR 
“reacti*” OR “longitudinal*” OR “lateral*” OR “*detecti*” OR “SPAD*” OR “violation” OR 
“hazard*” OR “incident*” OR “error*” OR “crash*” OR “accident*” OR “near crash” OR “near 
miss” OR “collision*” OR “critical” OR “task*” OR “critical event” OR “TTC” OR “time to 
collision” OR “safety gap” OR “tailgat*” OR “time headway” 

Physiological 
measures 

“blink*” OR “heart rate*” OR “EEG” OR “eye movement” OR “ECG” OR “eye track*” OR “eye-
track*” OR “pulse” OR “galvanic skin response” OR “skin conductance*” OR “*NIR*” OR 
“respirat*” OR “EMG” OR “blood pressure” OR “cortical*” OR “biochemical mark*” OR “bio 
mark*” OR “monitoring” OR “driver state” OR “mental*” OR “workload” OR “video*” OR 
“respir*” OR “temperature” 
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Mode of 
transport 

"car" OR "bus" OR "coach" OR "truck*" OR "lorry" OR "train" OR "tram" OR "rail*" OR "drive
r" OR "professional driver" OR "commercial driver" OR "vehicle" OR “automobile” 

Study design  "simulat*" OR "real-world driv*" OR "instrumented vehicle*" OR "natural* driving 
stud*" OR "field operational test*" OR "field operational trail*" OR “on road” OR “FOT” 

 

The key terms were then entered into the databases in combination: “Emotion” AND 

(“Performance” Or “Physiological”) AND “Mode” AND “Study”, with the following inclusion 

criteria: 

 Published between 2005-2019 

 Search term included in title, abstract or key words 

 Language as English or German 

 Document type as journal or review 

 Source type journals 

 

The search was conducted in the databases Scopus and Google Scholar. Publications were 

deduplicated, screened by title (403 publications) and then by abstract. Although the limitation 

was set to publications after 2005, six papers which met the criteria had to be excluded due to 

outdated methods. On the other hand, other publications from similar years were included as 

they appeared relevant. Additional key references were also added. Eventually, 30 

publications were screened thoroughly.  

While there is a range of studies investigating the impact of emotions on road safety, this 

literature search and review explicitly focuses on research relating to objectively measuring 

emotions, preferably in the context of road safety. A summary table of the reviewed studies 

can be found in Annex E, including an overview of the constructs measured (e.g. fear, stress, 

negative emotions etc.), the measuring method(s), the study design, main results and our 

conclusions, especially in view of the next steps in the i-DREAMS project. 

Table 7 represents counts of reviewed studies which reported on measuring a certain emotion 

category or qualitative aspect of emotions. While (emotional) stress is not an emotion by 

definition, this construct was included in the search and was most often one of the research 

topics followed by anxiety or fear and anger, aggression and frustration. The relative 

importance of those constructs is also reflected in the outcome of recent work by Bosch et al. 

(2019), who had experts in the automotive industry assess the type of emotions that will be 

most relevant to detect in vehicles. They found that anger, stress and fear are among the most 

relevant emotions for the industry. 

Table 7: Number of studies reviewed per measured emotion or related construct 

Anger, 
frustration, 
aggression 

(Emotional) 
stress Anxiety, fear 

Arousal, 
valence; 
pos./neg. 
emotions; 
affective 

state 

Happiness, 
euphoria, 

amusement 

Sadness, 
disappoint-

ment Disgust Surprise 

13 9 7 6 6 6 2 1 

 

Table 8 shows the number of reviewed studies which used a certain measurement method or 

indicator to determine emotions or similar constructs. Since the table shows a mere 

quantification, no conclusion for the applicability in i-DREAMS can be drawn from it. However, 

a tendency of methods used in recent years becomes apparent. Heart related measures 

(pulse, heart rate, inter-beat interval etc.) and measures using electrodermal activity (using 

‘skin conductance’, also called ‘galvanic skin response’) were used the most often within the 
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30 reviewed studies. The top four categories are all physiological measures. The first 

behaviour measure category is only ranked fifth. However, not all of the publications stem from 

a driving context. Most of the studies used more than one method to capture the emotion or 

related construct.  

Table 8: Number of studies reviewed that used measurement method 

ECG, 
other 

cardiac 
meas. 

EDA  
(SC, 
SCL) EEG 

Skin 
temp, 
NIR 

Ocular 
meas. 

Facial 
expres-

sion EMG 
Respir-
ation 

Speech 
recog-
nition 

Blood 
pressure 

17 15 7 7 4 4 3 3 2 1 

 

It has to be noted that the majority of the 30 studies were conducted within the realm of road 

safety research, a few in the context of emotion research per se or Human Machine Interaction 

(HMI) other than car manufacturing. Furthermore, most of the road safety studies report driving 

simulator experiments. The experimental laboratory setting of a simulator allows for great 

flexibility compared to naturalistic driving studies, when it comes to applying measurement 

equipment. Speech recognition, for example, will not be a useful technique since in a 

naturalistic setting, participants cannot be encouraged to speak during their drives.  

 

4.3.5 Conclusions and recommendations 

A systematic search of the scientific literature on measuring emotions was conducted to 

identify the most valid, reliable and appropriate behavioural and physiological indicators and 

respective measurement methods. Although measuring emotions in the context of 

transportation research was the focus, studies from the domains of health and HMI were also 

included in the search. Regarding emotions while driving, most of the reviewed studies were 

driving simulator experiments, with limited studies conducted in real-world naturalistic driving 

scenarios. This result is plausible, given the ethical constraints that come with inducing 

emotions. Also, a manipulation check is easier to conduct in the controlled environment of a 

simulator.  

The research designs of the studies are very heterogeneous with a broad variety of underlying 

theoretical assumptions regarding the operationalization of ‘emotions’; some studies did not 

provide details on their definition of emotion at all. However, anger, frustration, aggression, 

stress as well as fear and anxiety appeared to be the most frequently studied emotional 

categories. A two-dimensional approach with the combination of arousal and valence levels is 

very common and can also be recommended for the i-DREAMS project.  

With regards to potential indicators of emotional states, EDA and heart-based measures are 

most frequently used in the reviewed studies. EEG, as the third leading measure in the studies, 

can be neglected, since the set-up and support from i-DREAMS staff is assumed to be too 

time-consuming, especially in the trial stage. Furthermore, the majority of studies described 

using more than one physiological or behavioural measure.  

Although the synthesis of results is complicated due to the broad spectrum of research 

designs, a few recommendations can be drawn: 

 Focus on stress, anger and fear, operationalised with arousal/valence approach since 

these are currently the best understood constructs in terms of real-time measuring. 

 Use of more than one measurement method: complementing the ‘CardioWheel’ (ECG) 

with an EDA measuring device such as a wristband or a (thermal) camera facing the 

participant is advised. The complementary method may provide evidence for validity.  
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 Use of simulator phase to validate constructs including the induction of emotions and 

a manipulation check through self-assessment of experienced emotions since this 

appears to be the standard in scientific literature. 

 

4.4 Assessment of technology for measuring the driver’s mental state 

Devices and equipment used in the reviewed studies measuring attention, fatigue/sleepiness 

and emotional states were separately reviewed and assessed in terms of intrusiveness, validity 

and reliability (if available) and overall applicability for i-DREAMS purposes. Some of the 

devices had to be excluded from the review, for example, if the vendor does no longer operate 

or the product is not commercially available. Furthermore, EEG equipment was also excluded 

due to the level of intrusiveness. The details of the review can be found in Annex F. Table 9 

summarizes the assessment of available technology, focusing on the theoretical suitability of 

single devices or technologies for measuring the driver state constructs in question and the 

applicability in two settings ‘simulator’ and ‘on-road trial’. Intrusiveness is reason for a negative 

assessment of a device for the on-road setting. The table/review does not consider financial 

feasibility and no prioritisation of positive assessed devices was made in terms of validity. 

 

Table 9: Overall assessment of devices and technology for measuring driver state, cells highlighted in bright 
green indicate feasibility to operationalize construct or in setting, red indicates the contrary. Lines are highlighted 

in dark green if device can be used for all constructs and settings.  

Product Indicator 

Constructs 

A=Attention, distraction F=Fatigue, 
sleepiness E=Emotions, stress 

Simulat
or 

+/- 

On-road 
test 

+/- 

BioRadio 150 by Great 
Lakes NeuroTechnologies 

EDA A F E +  

BIOPAC Systems for (ECG) EDA, HRV, Temperature A F E +  

Cardio Wheel HRV A F E + + 

Empatica E4  EDA A F E + + 

Eye tracking glasses  
Fixations, head position, 
PERCLOS, blink 
parameters  

A F E +  

FlexComp from Thought 
Technology 

EDA, HRV A F E +  

Optalert 
Eye and facial 
features/position 

A F E + + 

Seeing Machines 
Eye and head features/ 
position 

A F E + + 

Shimmer 3 HRV A F E +  

SMI, Smart Eye Eye tracker 
Eye and head features/ 
position 

A F E +  

Texas instruments biometric 
steering wheel 

HRV A F E + + 

Vigo, eye tracking 
Eye and head features/ 
position 

A F E + + 

Vital jacket EDA, HRV A F E + + 

Zephyr BioModule HRV A F E + + 
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4.5 Monitoring mental state of operators in aviation and maritime 

This sub-chapter explores methods for monitoring driver state in transport modes other than 

those considered in i-DREAMS, namely in the aviation and maritime sectors. This aims at 

potentially learning from the research conducted specifically for those modes. A literature 

search was carried out with key search terms concerning the driver mental states targeted in 

the project8.  

The results showed that real-time monitoring of the operator’s mental state is not common in 

the aviation and maritime sectors. This is not surprising for the maritime sector, as the relatively 

low speed and density of maritime traffic leaves quite large reaction time margins for the 

navigating officers; therefore, emphasis is put on alerting the operator for risks in the 

environment rather than his/her own steering behaviour. In the aviation sector too, approaches 

for real-time monitoring of pilots’ mental state are limited, although automation has been 

deployed for decades, and human-machine interaction is a considerable part of piloting. The 

fact that fatigue, stress and anxiety, cognitive disorders and poor situational awareness (largely 

due to human out-of-the-loop problems related to automation) are persistently among the key 

contributory factors in aviation crashes (Jones & Endseley, 1996), monitoring pilot’s mental 

state is mostly carried out within standard training, re-training and fitness screening processes 

by means of medical evaluations, neuropsychological tools, simulator sessions etc. 

A few recent studies were found dealing with real-time monitoring pilot mental state, most of 

them testing new sensors and unobtrusive methods for measuring physiological indicators. 

Lehrer et al. (2010) compared heart rate metrics with expert ratings of task load and stress in 

a simulator experiment and found a robust matching of increased cardiac data and self report 

/ expert rating. Dehais et al. (2019) tested a portable six dry-electrode EEG system aiming to 

distinguish light- from heavy-workload conditions in a real-world scenario and concluded that 

further steps are required so that the sensors can be fine-tuned for everyday flight operations. 

A single channel EEG system was tested in-flight for 14 pilots during long-haul flights to 

(successfully) detect low vigilance states (Sauvet et al., 2014). 

Majumder et al. (2019) used a data recording system (MP 160, BIOPAC Systems) in order to 

record ECG, EEG, and PPG (Photoplethysmogram, a physiological measure, which can detect 

the changes in peripheral blood volume) signals during a simulated flight, aiming to detect 

drowsiness. It was found that Pulse Arrival Time (PAT, measured as the difference between 

ECG and PPG peaks) was positively correlated with drowsiness. 

Other wearable and portable brain monitoring sensors such as functional near infrared 

spectroscopy (fNIRS) have also been tested in order to investigate brain activity in various 

everyday human tasks. Gateau et al. (2018) tested such a system in various tasks within 

simulator and real-life flying and found that single-trial working memory load could be 

accurately classified in both experimental conditions. 

Peissl et al. (2018) reviewed 76 studies on the use of eye tracking technologies in aviation for 

measuring fatigue, spatial disorientation, hypoxia and high workload in general, and concluded 

that studies consistently show great potential of oculomotor measures for making real-time 

predictions of several risk factors. Thatcher and Kilingaru (2012) described the architecture for 

an intelligent software agent to assess a pilot’s situation awareness through the observation 

of eye movements. An interesting aspect of this approach is the fact that the eye movement 

                                                
8 The search was carried out in the Scopus database, and concerned title, abstract and keywords search. As 

combined searches (e.g. <fatigue>OR<drowsiness>OR<alertness>) yielded a large number of irrelevant papers, 

separate searches were carried out for each mental state factor and each transport sector. For instance: <mental 

state factor> AND <transport mode> AND <pilot/operator> AND <monitoring>. Articles returned were screened by 

title and abstract in order to select relevant studies.  
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behaviour is compared to a behaviour database including data on appropriate (i.e. safe) 

behaviour. Lounis et al. (2020) present a preliminary evaluation of an embedded system 

‘FETA’ that evaluates the visual monitoring of the cockpit online. The system compares the 

current visual scan of the pilot with a database of “standard” visual circuits created on the basis 

of eye tracking data from 16 airlines pilots and alerts the pilot through an auditory alarm in case 

there is a large deviation from the database. Preliminary results were promising regarding 

situation awareness, visual behaviour and overall performance monitoring, however further 

validation was deemed necessary before proceeding to operational implementation. 

There is consensus in several studies dealing with stress monitoring through heart-rate 

measurements. Socha et al. (2016) used a Garmin commercial chest-strap sensor together 

with a heartbeat sensor to monitor the level of stress in eight trainee pilots, in simulator and 

real flight conditions. Luig & Sontacchi (2014) suggested an innovative system combining 

speech recognition and heart rate measurements for real-time monitoring of pilot stress; the 

voices and the heart rates of eight airline pilots were recorded while completing an 

advanced flight simulation programme and found that several heart rate variability parameters 

correlate with speech features in stress manifestations. 

 

4.5.1 Conclusions 

In summary, there are three main methods for monitoring pilot mental state in aviation: (i) ECG 

and other heart-rate monitoring techniques are considered very reliable for monitoring 

workload, drowsiness/fatigue and stress, (ii) eye tracking techniques used to monitor fatigue, 

drowsiness and situational awareness, (iii) speech recognition databases for monitoring stress. 

Several studies (e.g. Peissl et al., 2018) suggest that a complementary use of unobtrusive 

sensors would enhance the reliability of monitoring. 

 

4.6 Substance impairment 

Driving under the influence of psychoactive substances is one of the main contributing risk 

factors to road traffic accidents, fatalities and serious injuries (ETSC, 2017; Schulze, 

Schumacher, Urmeew, & Auerbach, 2012; Talbot et al., 2016). For Europe, the DRUID project 

estimated the mean prevalence amongst the general driving population for alcohol, illicit drugs, 

and medicines. According to the results, alcohol was detected in 3.5% (>0.1 g/L) and 1.5% (> 

0.5 g/l) of the drivers, illicit drugs (mainly cannabis) in 1.9% and medicines9 (mainly 

benzodiazepines and opioids) in 1.4% of the drivers (Houwing et al., 2011). Furthermore, 

combinations of drugs and medicines were found in 0.39% and alcohol combined with drugs 

or medicines in 0.37% of the drivers (Houwing et al., 2011). The prevalence of substance use 

is even higher among injured and fatally injured drivers. The studies performed in the DRUID 

project concluded that alcohol was present in 24.4% of the seriously injured and 32.8% of the 

killed drivers, whereas illicit drugs and medicines were detected in 15.2% and 15.6% 

respectively (Isalberti et al., 2011; Legrand et al., 2014, 2013; Schulze et al., 2012). These 

figures indicate that drink driving is not only more prevalent among the general driving 

population but is also a more prevalent cause of road traffic fatalities and injuries compared to 

driving under the influence of drugs and medicines.  

Driving under the influence of psychoactive substances varies according to driver age and 

gender. Driving under the influence of alcohol is mainly observed among male drivers aged ≥ 

35 years during weekday nights and at weekends whereas illicit drug use is more prevalent 

among young males aged 15-34 years and at all times of the day but mostly during weekends 

                                                
9 It should be taken into account that the DRUID-project only tested for a limited number of medicines 
namely: benzodiazepines, medicinal opioids and Z-hypnotics (zolpidem or zopiclone). 
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(European Monitoring Centre for Drugs and Drug Addiction, 2012). Furthermore, driving under 

the influence of medicines is mainly observed among middle-aged and older female drivers (≥ 

35 years) during daytime hours (European Monitoring Centre for Drugs and Drug Addiction, 

2012). 

Substance use influences the psychological state of the driver and impairs driving ability which 

results in an increased risk of being involved in accidents (Elvik, 2013). As indicated in Table 

10, the effect on driving ability varies with the substance type. Substances can be classified 

into three categories: depressants, stimulants, and hallucinogens. The intake of narcotic 

substances or depressants has a sedative effect on the user resulting in reduced inhibitions, 

concentration and overestimation of driving skills (Arnedt, Wilde, Munt, & MacLean, 2001; 

Marillier & Verstraete, 2019). This results in increased reaction times, higher variability in 

driving speed, drowsiness and swerving. Stimulants have a different impact on driving skills as 

they provide an energetic and alert feeling. Drivers become overconfident, adopt a more 

aggressive driving style and take more risks whereas their vehicle controlling abilities are 

reduced (Marillier & Verstraete, 2019; Shinar, 2006). Substances with a hallucinogenic effect 

create feelings of euphoria, relaxation, and drowsiness. The impact on driving skills is reflected 

by increased reaction times and impaired coordination leading to poor execution of complex 

driving tasks (i.e. tasks for which the attention has to be divided over various tasks) (Marillier 

& Verstraete, 2019).  

Table 10: Influence of substance use on driving performance (adopted from Marillier & Verstraete, 2019) 

Type of substance Side effects 

Acute Chronic Combination 

Depressants (alcohol, 
benzodiazepines, Z-
hypnotics, heroin) 

Slow reaction time, poor 
judgment, impaired vision 
and hearing, poor 
coordination and a false 
sense of confidence, risk-
taking behaviour. 
 
Signs of impairment are 
erratic driving (weaving, 
swerving, ignoring road 
signs), confusion, slowed 
reaction time, increased risk-
taking, unresponsiveness, 
tunnel vision, lack of 
balance, unsteady 
coordination and varying 
states of wakefulness 

Slowed reflexes, slower 
information processing, 
significant loss of cognitive 
functions. When drinking or 
taking drugs regularly one 
will be able to drink 
larger quantities before 
feeling or appearing 
intoxicated (tolerance) 

The sedative effects of both 
alcohol and sedative 
medications can enhance 
each other. 
 
Various combinations 
definitely impair the driving 
performance. 

Stimulants 
(methamphetamine, 

amphetamine, cocaine) 

Lack of coordination, 
sensory disturbances, 
disorientation, restlessness, 
lapses of attention, difficulty 
reacting appropriately to 
safely control a vehicle, 
increased risk-taking, 
overconfidence in driving 
skills, drowsiness or 
rebound fatigue (as the 
effects wear off). 
 
At low concentrations the 
amphetamines can improve 
attention etc., at higher 
doses they cause 
impairment. They cause 
significant impairment during 
high fatigue states after the 
“high” 

Defects in cognitive 
functions, increased 
impulsivity and depression. 

Alcohol reinforces negative 
effects and can cause some 
additional defects. Some 
effects of alcohol can be 
diminished. 

Hallucinogens (LSD, 

cannabinoids) 

Visual or auditory 
hallucinations, a feeling of 
not being in control, or of 

After repeated use, users 
need increasingly larger 
doses to produce similar 
effects. 

Additive or even synergistic 
relation with negative effects 
of alcohol. 
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being disconnected from 
reality, concentration loss, 
becoming over-confident on 
the road, more likely to take 
risks, impaired coordination 

Long-term effects of some 
LSD users include sudden 
flashbacks, recurrence of 
certain aspects of a person's 
experience without the user 
having taken the drug again 

 

Since substance use impairs driver performance, it also leads to higher risks of being involved 

in severe accidents and being seriously injured or killed compared to unimpaired drivers. As 

illustrated in Table 11, the risk level varies according to the type of substance. The highest risk 

is associated with a high blood alcohol concentration or using other psychoactive substances 

in conjunction with alcohol, followed by medium alcohol concentrations, multiple medication 

use and driving with amphetamines (Schulze et al., 2012). Alcohol concentrations between 0.5 

and 0.8 g/L, medicinal opioids, illicit opiates and benzodiazepines, and Z-drugs are associated 

with a medium increased risk. Nevertheless, accident and injury risk are significantly increased 

when multiple psychoactive substances are used simultaneously (Hels, et al., 2011; Schulze 

et al., 2012; SWOV, 2015). Furthermore, it should be mentioned that the results from the 

DRUID project revealed that driving under the influence of alcohol is the largest road safety 

problem in nearly all European countries resulting in more road casualties every year 

compared to driving under the influence of drugs and medicines (Schulze et al., 2012).  

Table 11: Relative risk level of involvement in severe accidents and being seriously injured or killed compared to 
unimpaired drivers (adopted from Schulze et al., 2012) 

Risk Level Relative risk Substance group 

Slightly increased risk  1–3  0.1 g/l ≤ alcohol in blood < 0.5 g/l  
Cannabis  

Medium increased risk  2–10  0.5 g/l ≤ alcohol in blood < 0.8 g/l  
Benzoylecgonine  
Cocaine  
Illicit opioids  
Benzodiazepines and z-drugs  
Medicinal opioids  

Highly increased risk  5–30  0.8 g/l ≤ alcohol in blood < 1.2 g/l  
Amphetamines  
Multiple drugs  

Extremely increased risk  20–200  Alcohol in blood ≥ 1.2 g/l  
Alcohol in combination with drugs  

Notes: Cannabis and amphetamines: owing to very different single-country estimates, the risk estimates must be treated with caution.  
Benzoylecgonine, cocaine and illicit opioids: owing to few positive cases and controls, the risk estimates must be treated with caution. 

 

It is also worthwhile mentioning that driving under the influence of drugs and medicines is not 

as well understood as drink driving (ETSC, 2017; Schulze et al., 2012). For alcohol, a clear 

link is established between blood concentration and accident and injury risk whereas this is 

not the case for the other substances due to the variety of substances and their varied effects 

(Schulze et al., 2012). For example, depending on the type of drugs or medicines, a small dose 

can already result in extreme high-risk levels whereas, for some other types, quantities 

significantly above the therapeutic range are required to result in extreme high accident and 

injury risks (Schulze et al., 2012). 

 

4.6.1 Definitions 

Substance impairment in this deliverable focuses on alcohol, drugs, and medicines. These 

substances are often denoted as psychoactive substances because their consumption causes 

a physiological change in the body (Stedman’s Medical Dictionary, 2005). Because of this 

psychoactive effect, these substances affect the behaviour, mood, senses, consciousness, 

and perception of the user, which in turn can have a negative impact on driving skills and 

higher accident involvement (Talbot et al., 2016). Therefore, driving under the influence of 
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alcohol, drugs, and medicines are regarded as a risk to road safety. Psychoactive substances 

can be classified into two categories: licit and illicit substances. Some substances that impair 

driving performance are licit. Examples of licit (addictive) substances are caffeine, nicotine, 

and alcohol. Alcohol is the most prevalent psychoactive substance among drivers (ETSC, 

2017; European Monitoring Centre for Drugs and Drug Addiction, 2012; Schulze et al., 2012; 

Talbot et al., 2016). Prescription drugs or medicines, used to treat legitimate medical conditions 

and illnesses, are also regarded as licit substances. Sometimes medicines are even prescribed 

to reinstate a person’s driving skills. Nevertheless, medicines can have harmful consequences 

for driving skills as they can be consumed incorrectly for instance by taking higher doses than 

recommended, irregular consumption or by combing multiple medicines. Illicit psychoactive 

substances are usually denoted as drugs. Examples of drugs are cannabis, cocaine, illegal 

opiates, heroin etc. Illicit drugs differ from their licit counterparts (medicines or medicinal drugs) 

in terms of the context in which the substances are used. Medicines are prescribed by a 

medical practitioner and are part of medical treatment whereas drugs do not have any medical 

purposes and are merely used recreationally to experience the sought after effects associated 

with certain illicit drug types (ETSC, 2017). 

 

4.6.2 Measuring substance impairment 

Substance impairment can be measured by means of traditional methods, primarily used for 

law enforcement purposes, and through emerging wearable sensor technologies, which allow 

continuous monitoring. 

 

Traditional methods  

The most common approaches to detect substance impairment are obtained from biological 

samples by means of blood tests, saliva tests and breathalysers (Mahmud, Fang, Carreiro, 

Wang, & Boyer, 2019; Marillier & Verstraete, 2019; Veisten, Houwing, Mathijssen, & Akhtar, 

2011). Other methods, such as testing hair, urine, and sweat, may prove substance use but 

have a longer detection window which can give rise to corrupted and inaccurate results 

(Mahmud et al., 2019; Verstraete, 2004). This implies that when traces of substance use have 

been found, it cannot be determined with 100% certainty whether the individual is still impaired 

or has recently consumed psychoactive substances (Mahmud et al., 2019). Furthermore, urine 

sampling is regarded as a gold standard for detecting drug use, but these tests affect the 

physical integrity and are difficult to carry out in the context of roadside police detection. This 

is also applicable to blood tests. Most drugs can be detected in the blood for approximately 24 

hours after consumption but are relatively expensive and cannot be conducted during roadside 

detection (Veisten et al., 2011; Verstraete, 2004). For these reasons, police officials prefer 

saliva collection to detect drug use because of its ease of use, low invasiveness and low risk 

of infection (Asbridge & Ogilvie, 2015). Saliva samples are suitable to detect recent drug use 

because they have the same short detection window as blood samples (Verstraete, 2004). 

However, some drugs such as cannabis and ecstasy have the side effect of reducing salivation 

making it challenging to obtain a sufficient sample (Marillier & Verstraete, 2019). Due to recent 

improvements, the currently available saliva testing devices also have acceptable sensitivity 

rates. Strano-Rossi et al. (2012) compared four commercial site saliva drug screening devices, 

namely DDS®, Drugtest 5000®, Drugwipe5+®, and Rapid STAT®. All devices yielded acceptable 

performance rates for different drug types but the Drugtest 5000® was the only commercially 

available saliva kit that obtained the highest sensitivity rates (Strano-Rossi et al., 2012).   

Alcohol impairment is traditionally measured by means of breathalysers, which indirectly 

estimate BAC by measuring breath alcohol concentration (Campbell, Kim, & Wang, 2018). 

This detection method can be easily applied during roadside detection by means of portable 
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breathalysers but the results can be inaccurate due to inconsistent system calibration, 

contamination from compounds present in the mouth and interference from several factors 

such as humidity and temperature (Ali et al., 2013; Simpson, 1987; Worner & Prabakaran, 

1985).  

In addition to testing substance impairment by means of biological samples, behavioural tests 

can also be used to monitor driver impairment. An example of a behavioural test is the 

Standardized Field Sobriety Test in which driver impairment is observed by means of a number 

of coordination exercises such as One-Leg Stand Test, Horizontal Gaze Nystagmus Test and 

Walk and Turn Test (Marillier & Verstraete, 2019). Behavioural tests can also include 

monitoring external characteristics of substance use such as wide pupils, bloodshot eyes or 

excessive chewing movements. These tests are usually performed to provide an extra 

confirmation of driver impairment (Marillier & Verstraete, 2019). 

Another primary information source of substance impairment is self-report measures, which 

are typically used in clinical trials. However, self-report measurements are very often 

characterized by inaccurate reporting rates. Consumers also have the tendency to underreport 

their consumption because substance use is regarded as socially disapproved or stigmatized 

(Mahmud et al., 2019).  

 

Emerging technologies 

As mentioned in the previous section, the traditional methods to detect substance impairment 

suffer from various weaknesses: the methods are time-intensive and expensive, the detection 

window can vary significantly according to the substance type leading to inaccurate results and 

retrospective instead of continuous insights into substance use are provided (Mahmud et al., 

2019). These weaknesses stress the necessity for alternative technologies or detection 

techniques that provide a continuous, robust and accurate way to monitor substance 

impairment among drivers. Recent advancements in wearable sensor technologies can fill this 

void. Wearable sensor devices or wearables can register a variety of physiologic measures 

and are very user-friendly due to their compact size (Mahmud et al., 2019). Additionally, 

wearables have gained significant research attention during the past years and are also 

becoming more commercially available (i.e. smartwatches) (Bandodkar, Jeerapan, & Wang, 

2016; Heikenfeld et al., 2018; Mahmud et al., 2019; Windmiller & Wang, 2013). Current 

wearables technologies use biological samples (breath- and transdermal-based measures), 

touch-based measures, ocular-measures and physiological measures to detect substance 

impairment.  

Transdermal-based wearable sensors 

Wearable alcohol sensors have emerged as a valuable technology for non-invasive, objective 

and continuous monitoring of alcohol consumption and potential intervention (Barnett, 2015; 

Campbell et al., 2018; Fairbairn & Kang, 2019; Leffingwell et al., 2013; Wang, Fridberg, 

Leeman, Cook, & Porges, 2018). The majority of wearable alcohol sensors use transdermal 

measurements to monitor alcohol impairment. Transdermal sensors estimate the level of blood 

alcohol concentration by examining the amount of alcohol that is present in water vapour 

emitted from the skin through a device that rests on the surface of the skin (Fairbairn & Kang, 

2019). Several studies have established strong correlations between transdermal alcohol 

concentration (TAC) and blood alcohol concentration (BAC) (Luczak & Rosen, 2014; Sakai, 

Mikulich-Gilbertson, Long, & Crowley, 2006). The first wearable transdermal alcohol sensor 

was the Secure Continuous Remote Alcohol Monitor Continuous Alcohol MonitoringTM 

(SCRAM CAM) anklet (Alcohol Monitoring Systems, Inc., 2019) which is primarily used and 

developed for law enforcement purposes. The anklet is the most widely used and validated 

wearable transdermal alcohol sensor (Leffingwell et al., 2013; Sakai et al., 2006). Furthermore, 
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several studies have tested the anklet and concluded that the SCRAM CAMTM is an objective 

monitoring device which improves the prediction of alcohol dependence and efficacy of alcohol 

intervention (Barnett, Meade, & Glynn, 2014; Barnett et al., 2017; Dougherty et al., 2015; 

Neville, Williams, Goodall, Murer, & Donnelly, 2013). Nevertheless, the SCRAM CAMTM anklet 

suffers from several limitations which hinder its application for monitoring alcohol use over 

longer time periods such as its large size and weight, high purchase costs combined with daily 

user fees and large sampling intervals (30 min.) (Barnett, 2015; Leffingwell et al., 2013). The 

newest generation of wearable transdermal alcohol sensors is wrist-worn. Consequently, these 

wearable devices are smaller, making them more acceptable for daily use as their size and 

weight are comparable to that of a smartwatch. The IONTM (Milo Sensors, 2019) and BACtrack 

SkynTM (BACtrack Inc., 2019) are two wrist-worn transdermal alcohol sensors that are 

commercially available and are specially designed for consumer use making them more suited 

to use for research purposes than the SCRAM CAMTM anklet. Both devices overcome several 

weaknesses of the SCRAM CAMTM anklet: they are user–friendly (light, easy to wear), relatively 

inexpensive, can sample alcohol impairment at a higher frequency (i.e. every second), transmit 

data in real-time, and display data through a specialized smartphone app or in an online 

database (Fairbairn & Kang, 2019; Wang et al., 2018). The specialized smartphone apps for 

both devices provide real-time visualizations of the current alcohol sensor reading, skin 

temperature, data connection status, battery status of the device and allow selection of 

sampling intervals for the alcohol sensor (i.e., every 1 s, 10 s, 30 s, 1 min, or 5 min (BACtrack 

Inc., 2019; Milo Sensors, 2019; Wang et al., 2018). Fairbairn and Kang (2019) evaluated both 

devices and found a strong correlation between BAC and TAC measured by means of both 

wrist sensors indicating that both devices are valid tools to measure (transdermal) alcohol 

intoxication. 

 

 

 

Secure Remote Alcohol Monitor (SCRAM™) 
(adopted from Alcohol Monitoring Systems, Inc., 
2019) 

 

IONTM alcohol tracking wearable by Milo 
Sensors (adopted from Milo Sensors, 
2019) 

 

 
 

BACtrack Skyn® from BACtrack (adopted 
from BACtrack Inc., 2019) 

Figure 4: transdermal alcohol monitoring wear 

Physiology based wearable sensors 

The consumption of psychoactive substances causes a physiological change in the body. 

Therefore, several studies have focused on monitoring physical reactions to substance use 

such as electrocardiogram (ECG), electro dermal activity (EDA), skin temperature, heart rate, 

and locomotion (Angarita et al., 2015; Carreiro, Fang, et al., 2015; Carreiro, Smelson, et al., 

2015; Carreiro et al., 2016; Howell, Nag, McKnight, Narsipur, & Adelegan, 2015; Natarajan et 

al., 2016, 2013). Researchers from the University of Massachusetts Amherst and Yale 

University used a wearable ECG sensor to detect cocaine use (Angarita et al., 2015; Natarajan 

et al., 2016, 2013). Cocaine and other stimulant drugs have an impact on the heart, which 

makes it possible to measure their effect through ECG signals. It should be kept in mind that 

regular daily activities such as stress, anxiety, and workouts also influence the heart rate which 

can lead to biased results (Mahmud et al., 2019). The researchers used a commercially 

available Zephyr Bioharness 3 chest band® (Medtronic, n.d.) to monitor cocaine impairment 
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and this system was able to measure cocaine use with high accuracy (>0.9) and sensitivity. 

Furthermore, Howell et al. (2015) developed a wearable biosensor in the form of a wristwatch 

to detect substance use by measuring multiple physiological data such as heart rate, 

temperature, and skin conductance. The wristwatch was linked to a smartphone app that sends 

alerts to the user if he tested positive for substance impairment. Substance use also influences 

motor activity. Park et al. (2017) developed a smart shoe equipped with a pressure sensor that 

registers the changes in gait caused by alcohol consumption with an accuracy rate of 86.2. 

Ocular measures 

Ocular measures can also be used to detect alcohol impairment. BreathalEyes® is a 

smartphone app that can be used to detect alcohol impairment by scanning your eyes in order 

to detect and analyse the Horizontal Gaze Nystagmus (HGN) (United States Patent No. 

US9042615B1, 2015). By analysing HGN the app yields a result of how impaired you are 

based on the involuntary twitching of the eye (United States Patent No. US9042615B1, 2015). 

To the best of the i-DREAMS consortium’s knowledge, there is no study publicly available that 

evaluates the accuracy rate of the BreathalEyes® app. 

Touch-based wearable sensors 

Trutouch technologies has created TruTouch® which uses a touch-based system to measure 

blood alcohol concentration by spectroscopically measuring alcohol in the user’s tissue 

(TruTouch Technologies, 2019). In other words, this technology measures the presence of 

alcohol beneath the skin’s surface or more specifically in the capillaries. The measurement 

works as follows, infrared light is shined into the user’s skin and reflected back to the skin’s 

surface where it is collected by a touchpad (TruTouch Technologies, 2019). The light that is 

reflected back contains information about the unique chemical properties of the skin, including 

the level of alcohol concentration (TruTouch Technologies, 2019). TruTouch technologies are 

currently investigating how this technology can be embedded in the start button or steering 

wheel of vehicles. If this technology proves to be reliable, it could have the potential to replace 

the installation of rather invasive alcohol interlocks in vehicles. 

Breath-based wearable sensors 

Similar to handheld breathalysers used by police officers to measure alcohol impairment during 

roadside testing, companies have produced different wearable devices for personal use. For 

example, Tokyoflash developed the Kisai Intoxicated LCD watch® with a built-in breathalyser 

to check blood alcohol levels (Tokyoflash Japan, 2019). The procedure works as follows, users 

breathe into the built-in breathalyser and the watch determines and displays the user’s blood 

alcohol level by means of colour code (red: highly intoxicated, yellow: medium intoxicated and 

green: not intoxicated) (Tokyoflash Japan, 2019). The manufacturer claims that the Kisai 

Intoxicated LCD watch® can be used to provide an indication of alcohol impairment but does 

not provide completely accurate results.  
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Figure 5: The Kisai Intoxicated LCD watch® (adopted from Tokyoflash Japan, 2019). 

4.6.3 Review of studies  

The presented literature review on substance impairment is primarily based on deliverables 

from the DRUID (Driving Under the Influence of Drugs, Alcohol and Medicines) project. Seven 

years after completion, this project still provides the most extensive and precise information 

and insights regarding the prevalence, impairment effects on driver skills and measuring 

techniques regarding psychoactive substances within the European road traffic system. These 

findings were complemented with the findings of deliverable D4.1 from the recently completed 

Horizon 2020 project SafetyCube (Talbot et al., 2016). This deliverable provides a literature 

review on road user-related risk factors and, amongst other risk factors partly focused on the 

safety risks of drink and drug driving. 

 

The relevant studies regarding the use of new emerging technologies to monitor driver 

substance impairment were obtained by a Google Search using the following keywords: 

 Driver monitoring and wearables 

 Alcohol impairment and wearables 

 Drugs impairment and wearables 

 Medicines impairment and wearables 

 

4.6.4 Conclusion for measuring substance impairment in i-DREAMS 

Substance impairment can be measured in various ways. Traditional methods to detect 

substance impairment use biological samples by means of blood tests, saliva tests, urine 

samples, and breathalysers. Self-report measures and behavioural tests can also be used to 

monitor driver impairment and are mostly used to gain the first confirmation of substance 

impairment. However, self-report measurements are very often characterized by inaccurate 

reporting rates or by participants providing socially desirable answers resulting in biased 

results (Mahmud et al., 2019). These methods are often used for enforcement purposes in the 

context of roadside police detection, which can affect the physical integrity of the individual and 

thus the participant compliance rate. They also do not allow for the continuous monitoring of 

substance impairment. Because of all these reasons, these traditional methods are difficult 

and less suited to carry out for research purposes within i-DREAMS.  

However, recent technological advancements in the area of wearable sensor technologies 

create new opportunities for the continuous monitoring of substance impairment by means of 

biological samples (breath- and transdermal-based measures), touch-based measures, 

ocular-measures, and physiological measures. Wearable sensor technologies using touch-

based, breath-based and ocular measures are still under development and/or have not been 

validated. Physiological measures are validated and provide high accuracy but wearing a 

chest-band for continuous monitoring purposes can be unpleasant for the participant. 

Therefore, commercially available wrist-worn transdermal alcohol sensors, which are 

comparable to a smartwatch, have more potential to be used as a tool to measure substance 

impairment within i-DREAMS. These devices are user-friendly, non-invasive, relatively 

inexpensive, sample alcohol impairment at a high frequency (i.e. every second), allow for real-

time continuous monitoring, display the data through a specialized smartphone app and/or in 

an online database and provide objective and validated measurements of the level of alcohol 

impairment (Fairbairn & Kang, 2019; Wang et al., 2018).  

As became apparent from the literature review, driving under the influence of drugs and 

medicines is still not as well understood as drink driving. Numerous studies have investigated 

and demonstrated the effects of psychoactive drugs and medicines on driving ability, but there 
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appears to be no universal agreement on how best to measure the levels of impairment that 

psychoactive drugs cause to the driver (UK Department for Transport, 2013). This is primarily 

caused by the variety of substances and their diverse effects. This lack of knowledge is also 

reflected in the development of new wearable technologies to monitor substance impairment 

as the currently available technologies primarily focus on monitoring alcohol impairment. All 

these aspects should be taken into consideration when designing the substance impairment 

component of the i-DREAMS system. 

 

Regardless of the measurement methods and their quality, practical considerations for 

implementations in i-DREAMS should be noted. Although impairment may be measurable in 

real-time with increasing reliability, the effects of the specific impairment may be expressed in 

impaired attention and alertness and thus, already accounted for by the corresponding real-

time measurements. This should be borne in mind for the model of the safety tolerance zone. 
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5 Driver characteristics – Indicators and measuring 

methods 

As argued in the introduction, not all individual-related factors that determine the driver’s 

capacity to cope with the task demand are able to be measured in real time while driving. 

Factors such as personality traits, driving experience or health status are relatively stable over 

time and thus, they do not change suddenly. Nevertheless, they will be considered and 

explored here, since some of those factors will be subject to a one-time measurement for one 

or more reasons: 

1) It has to be considered whether or not some of the driver characteristics will be 

introduced into the safety tolerance zone model as a constant and serve as a kind 

of correction factor (see also deliverable 3.1: Talbot et al., 2020). When exploring 

this option, it is important to exercise care. It has to be avoided to account for a 

contributing factor twice, since they can be already reflected in the driver state or 

the driver behaviour. Although this can be difficult to assess, e.g. risk-taking 

tendencies might be reflected already in driving behaviour or certain diseases might 

be expressed through the mental state.  

2) Some of the factors which will be measured real-time during driving can benefit 

from contextualisation and validation. Interpreting the construct ‘emotions’ for 

example, measured in real-time may be facilitated by providing information on inter-

individual differences in e.g. emotional regulation competence or anger proneness. 

3) One of the aims of i-DREAMS is to make the collected data of the trials available 

for further research in form of a comprehensive database. Since we cannot 

anticipate future needs for control variables, background factors of the test subjects 

may be very valuable.  

4) Some of the driver characteristics may help to provide customized interventions 

(real-time and post-trip, respectively). 

 

Constructs and variables of different categories will be relevant to capture, such as 

competences, personality traits, health conditions, habits and socio-demographic factors. The 

methods to collect data accordingly are manifold. While age and profession can simply be 

queried, while e.g. reactivity is measured via standardised, validated and normed performance 

tests. The latter provide for objectivity compared to self-assessments. On the other hand, tests 

often require equipment, can be expensive and long. Thus, the trade-off regarding 

performance tests is often between validity and efficiency. Although, self-reported information 

is subject to desirability bias (among other problems) it is often the sensible choice due to 

resource restrains.  

The aim of this review was to identify what will be relevant for one or more of the above-

mentioned purposes and to recommend measuring tools accordingly. The evaluation and 

recommendation are based on the applicability in i-DREAMS in terms of: 

 Language availability 

 reliability and validity 

 Costs and required materials 

 Length (processing time for participants) 

 Reasonableness 

 

In chapters 5.1 to 5.5, stable factors which are known to be road safety relevant will be 

described and a range of measurement methods will be documented. Methods were not pre-
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selected in order to give a full picture of the options, independent of i-DREAMS requirements. 

The selection and recommendation will be provided in 5.6. 

 

5.1 Competences 

For safe driver performance and safe driver behaviour numerous of physical and mental 

competencies, and skills are preconditioned which are beyond the mere handling of the vehicle 

itself (steering, braking, switching gear etc.) and can also be referred to as ‘psychological and 

medical fitness to drive’. While many of these competencies and skills can be tested through 

single or combined (psychological) tests.  

In the field of differential psychology or psychological diagnostics, a test battery or a test 

system is a combination of different individual tests. Hence, some fitness to drive tests are 

applicable to multiple constructs or dimensions for measuring driving abilities. A selection of 

these test batteries is summarised below, as they will be mentioned throughout the chapter. 

The individual tests of these batteries or systems as a whole will be mentioned and described 

in detail where appropriate in the sub-chapters.   

 

 The single tests in the Vienna Test System were developed specifically for the use 

in driver assessments and are thus precisely tailored to this field of application. All 

individual tests are validated and are also appropriate for people with limited or no 

computer literacy. The standardized and objective process ensures that the same 

conditions apply to all test persons and therefore have the same opportunities – 

regardless of their level of education or cultural background (Chaloupka & Risser, 

1995). 

 The Perception and Attention Functions Test battery (WAF) consists of different 

sub-tests for measuring alertness, vigilance and sustained attention, divided 

attention, focused attention, selective attention, spatial attention and neglect, 

smooth pursuit eye movements and visual scanning. A total of 42 subtests are 

available, which can be specified independently of each other or in any desired 

combination (Häusler & Sturm, 2009). 

 The Test of Attentional Performance-Mobility (TAP-M)10 is able to measure 

attentional aspects of the ability to drive and includes 9 sub-scales. 

 The test battery itself consists of different subtests that measure the active visual 

field, alertness, distractibility, executive control, sustained attention, divided 

attention and others.  

 The neuropsychological test battery CERAD-Plus consists of the following tests: 

Verbal fluidity (Animals), Boston Naming Test (15 items), Mini Mental Status 

Examination, Word list Learning – recalling – recognizing; Copying of Figures; Trail 

Making Test A and B; Phonematic fluidity (Aebi, 2002). 

 The Assessment of Driving-Related Skills (ADReS) is a collection of individual 

tests and a screening tool for physicians. It uses two tests to determine visual 

abilities: the confrontational field testing and the Snellen chart to determine visual 

acuity. 

 The Corporal Plus is used in the field of fitness to drive assessments and medicine 

in Germany, occupational medicine, gerontology, clinical psychology and 

neuropsychology. The system offers a variety of diagnostic methods for capturing 

visual and combined visual-auditory responsiveness, concentration, attention, 

spatial orientation, as well as working memory.  

                                                
10 https://www.psytest.net/index.php?page=TAP-M&hl=en_US  

https://www.psytest.net/index.php?page=TAP-M&hl=en_US
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5.1.1 Emotional regulation 

According to Gross (2002) emotional regulation includes those processes that enable us to 

influence what emotions we have, when we feel them, and how we experience and express 

them. However, emotional regulation goes beyond the reduction of negative emotions. It also 

includes the control of positive emotions and in addition, the intensity of emotion can either be 

reduced, sustained or increased as it is seen best for a respective event or situation.  

Therefore, individuals with a low emotional awareness level on the one hand and a lack of 

emotional coping mechanisms on the other may have reduced driver safety and would be more 

frequently distressed (Legree et al., 2003). Consequently, a person that is able to permit or 

delay spontaneous reactions may be regarded as a safer driver. Below a selection of tests for 

measuring the ability of emotion regulation is listed: 

 

Cognitive Emotion Regulation Questionnaire (CERQ) 

CERQ is specifically designed to assess the conscious cognitive components of emotion 

regulation. It is a self-report questionnaire consisting of 36 items that measures nine different 

cognitive coping strategies.  

The CERQ makes it possible to identify individual cognitive strategies and compare them to 

norm scores from various population groups. In addition, the questionnaire offers the 

opportunity to investigate relationships between the use of specific cognitive coping strategies, 

personality variables, psychopathology and other problems (Garnefski et al., 2001). 

Measurement tool 
Type of 
measurement 
tool 

i-DREAMS 
languages 

Time in 
minutes 

Costs 
Add. 
equipment 
needs 

Validity 

Cognitive Emotion 
Regulation 
Questionnaire 
(CERQ)  

 Questionnaire DUT ENG*  - Free - Good factorial 
validity and high 
reliabilities, with 
Cronbach's α 
ranging between 
.75 and .87. 

FRE GER 

GRE POR 

* translation possible 

 

Perth Emotion Regulation Competency Inventory (PERCI) 

The Perth Emotion Regulation Competency Inventory a 32 item self-report questionnaire that 

measures the ability to regulate both, negative and positive emotions. The individuals have to 

agree or disagree how much the statements apply to their self. The questionnaire itself is 
freely available for use (Preece et al., 2018). 

Measurement tool 
Type of 
measurement 
tool 

i-DREAMS 
languages 

Time in 
minutes 

Costs 
Additional 
equipment 
needs 

Validity 

Perth Emotion 
Regulation 
Competency 
Inventory (PERCI) 

 Questionnaire 
DUT ENG* 

6-10 Free - All subscales have 
good internal con-
sistency reliability 
(α=0.85–0.94) and 
all composite 
scores had good 
internal con-
sistency reliability 
(α=0.92–0.94). 

FRE GER 

GRE POR 

* translation possible 
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Inventory of traffic-related personality traits – Revision (IVPE-R) 

The IVPE-R11 as an individual test of the Viennese Test System measures personality traits 

that are relevant for driving such as self-control, social responsibility, mental stability and risk 

avoidance. On the basis of a free scale, the individual assess to what extent a certain 

statement is applicable to them.  

The IVPE also allows the detection of other relevant personality traits like sensation seeking 

or social sense of responsibility. 

The test is not available in Dutch, Greek and Portuguese language. 

Measurement tool 
Type of 
measurement 
tool 

i-DREAMS 
languages 

Time in 
minutes 

Costs 
Additional 
equipment 
needs 

Validity 

Inventory of traffic-
related personality traits 
(IVPE-R) 

Personality test 

DUT ENG 

12-15 Price 
quote 
upon 
applica
tion 

- Reliability in terms 
of internal con-
sistency is given 
due to compliance 
with the Rasch 
model for each 
scale. Validity has 
in addition been 
demonstrated by a 
confirmatory factor 
analysis. 

FRE GER 

GRE POR 

 

STAI (State Trait Anxiety Inventory) 

The concept of the STAI is to measure trait anxiety as a proneness to interpret situations as 

menacing which then elicitings state anxiety. It is also available as a short version with ten 

items. Participants rate themselves on a four-point scale to indicate the frequency of certain 

situations (Spielberger et al., 1970). 

 

5.1.2 Stress regulation 

Drivers are regularly involved in more or less risky situations while driving. The threat that 

always resonates with these risks is subsequently experienced as stress (James & Nahl, 

2002). Stress in turn may lead to an increased amount of near crashes and accidents. 

Referring to this, Westerman & Haigney (2000) pointed out that drivers, who experience high 

levels of stress also report frequent lapses, errors and violations. Hereafter, a selection of tests 

for measuring the ability of stress regulation can be found: 

 

Determination test (DT) 

The DT12 is part of the Viennese Test System and measures the individual’s stress tolerance. 

The task is to continuously, quickly and differently respond to rapidly changing optical or 

acoustical stimuli by pressing the appropriate buttons on a keyboard or by means of a foot 

pedal. Due to this adaptive test specification, each person can be put into a situation of an 

overwhelming task demand with a correspondingly high stimulation. 

The test is language-free. Special standard norms for professional drivers are available. 

 

                                                
11 https://www.schuhfried.at/test/IVPE-R 
12 https://www.schuhfried.at/test/dt 

https://www.schuhfried.at/test/IVPE-R
https://www.schuhfried.at/test/dt
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Measurement tool 
Type of 
measurement 
tool 

i-DREAMS 
languages
13 

Time in 
minutes 

Costs 
Additional 
equipment 
needs 

Validity 

Determination Test (DT) Multiple 
stimulus-
response test  

DUT ENG 6-15 Price 
quote 
upon 
applica
tion 

+ No information  

FRE GER 

GRE POR 

 

Stress processing questionnaire (SVF) 

The SVF14 enables the measurement of coping or processing mechanisms in stressful 

situations. The questionnaire represents an inventory of methods that relate to different 

aspects of stress management. 

The SVF is only available in German and Czech language. 

Measurement tool 
Type of 
measurement 
tool 

i-DREAMS 
languages 

Time in 
minutes 

Costs 
Additional 
equipment 
needs 

Validity 

Stress processing 
questionnaire (SVF) 

Questionnaire DUT ENG 10-15 ca. € 
1,000 

- Numerous results 
on construct 
validity as well as 
on differential and 
criteria validity are 
documented. 

FRE GER 

GRE POR 

 

Differential stress Inventory (DSI) 

The DSI15 is also part of the Viennese Test System and captures both, the level of extent and 

causes of individual stress experiences. The method enables a differentiated measurement of 

stress triggers, stress manifestations, available coping strategies and risks of stress 

stabilization.  

The test is not available in Dutch, French and Greek language. 

Measurement tool 
Type of 
measurement 
tool 

i-DREAMS 
languages 

Time in 
minutes 

Costs 
Additional 
equipment 
needs 

Validity 

Differential stress 
inventory (DSI) 

Special 
personality test 

DUT ENG 23 Price 
quote 
upon 
applica
tion 

- DSI is a valid 
measure of the 
construct of daily 
stress. 

FRE GER 

GRE POR 

 

TICS (Trierer Inventar zum chronischen Stress) 

The TICS16 is a standardized questionnaire with 57 items for the differentiated diagnosis of 

chronic stress. In answering the TICS, the individuals indicate how often they have 

experienced a given situation in the past three months. 

However, there are no hints that the questionnaire could be relevant for traffic related research. 

 

                                                
13 language free task 
14 https://www.testzentrale.de/shop/stressverarbeitungsfragebogen.html 
15 https://psyexpert.de/wp-content/uploads/2019/04/DSI.pdf  

16 https://www.testzentrale.de/shop/trierer-inventar-zum-chronischen-stress.html  

https://www.testzentrale.de/shop/stressverarbeitungsfragebogen.html
https://psyexpert.de/wp-content/uploads/2019/04/DSI.pdf
https://www.testzentrale.de/shop/trierer-inventar-zum-chronischen-stress.html
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5.1.3 Attention regulation 

While driving a vehicle the driver has to cope with numerous attention-demanding tasks. Above 

all, selective and sustained attention is a fundamental ability for safe driving. 

The following selection shows different tests for measuring the ability of attention and attention 

regulation. 

 

Test of Attentional Performance (TAP-M) 

Based on the Test of Attentional Performance (TAP)17, which was initially designed for the 

assessment of attentional deficits in patients with cerebral lesions, a mobility version with 9 

sub-scales was developed. The test is able to measure attentional aspects of the ability to 

drive. 

The tasks involve easily distinguishable stimuli that individuals react to by a simple motor 

response. The test battery itself consists of different subtests that measure the active visual 

field, alertness, distractibility, executive control, sustained attention, divided attention and 

others. Thus, it is also applicable for other dimensions, especially for visual perception. 

Measurement tool 
Type of 
measurement 
tool 

i-DREAMS 
languages 

Time in 
minutes 

Costs 
Additional 
Equipment 
needs 

Validity 

Test of Attentional 
Performance (TAP-M) 

Motor 
Response 
Test 

DUT ENG 
~45 € 1,000 

for 1st 
licence 

Installation 
on local PC 

Validation of the 
test battery was 
supported by 
several European 
institutions being 
members of the 
European project 
"AGILE" 

FRE GER 

GRE POR 

 

Trail Making Test (TMT-L) – Version 'Trail A' (abbreviated), 'Trail B' (long)18 

The TMT is part of several neuropsychological test batteries and is composed of a paper-and-

pencil test.  

It is an internationally widely used test procedure for checking brain function performance and 

consists of two parts. The TMT-A predominantly checks the processing speed e.g. visual 

search, whereas the TMT-B tests higher cognitive performance, such as mental flexibility e.g. 

attention switching. 

The test covers also other dimensions e.g. visual perception. 

Measurement tool 
Type of 
Measurement 
tool 

i-DREAMS 
languages 

Time in 
minutes 

Costs 
Additional 
Equipment 
needs 

Validity 

Trail Making Test (TMT-
L), Version 'Trail A' 
(short), 'Trail B' (long) 

Performance 
test 

DUT ENG 
1-2 (A) 

1-3 (B) 

 - Timer Construct validity 
was assessed by 
confirmatory factor 
analysis (TMT-L; 
RMSEA < .06, CFI 
> .98)  

FRE GER 

GRE POR 

 

 

                                                
17 https://www.psytest.net/index.php?page=TAP-M&hl=en_US  
18 http://apps.usd.edu/coglab/schieber/psyc423/pdf/IowaTrailMaking.pdf  

https://www.psytest.net/index.php?page=TAP-M&hl=en_US
http://apps.usd.edu/coglab/schieber/psyc423/pdf/IowaTrailMaking.pdf
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Adaptive tachistoscopic traffic perception test (ATAVT)19 

This test – part of the Vienna Test System – measures the ability to gain a quick visual overview 

as part of one’s attention performance. Especially in traffic, a quick and accurate detection of 

complex visual situations is essential. Pictures of traffic situations are shown very briefly. 

Before the presentation the individual hears an announcement stimulus (sound) and after each 

picture it should be reported what was seen on the picture.  

In addition to traffic psychology, the test is also used for psychological safety assessments for 

professional drivers. International special standards for older drivers are available as well. 

Measurement tool 
Type of 
measurement 
tool 

i-DREAMS 
languages 

Time in 
minutes 

Costs 
Additional 
equipment 
needs 

Validity 

Adaptive tachisto-
scopic traffic perception 
test (ATAVT) 

Performance 
test 

DUT ENG 8-14 Price quote 
upon 
application 

Installation 
on local 
PC 

No information 

FRE GER 

GRE POR 

 

Cognitrone (COG)20 

The test that is also used within the Vienna Test System measures the individual’s 

concentration performance. Due to its high practical relevance, this test is not only used in 

clinical neuropsychology but also for fitness to drive assessments. 

The individual compares a geometric figure with four other geometric figures and indicates 

whether it is identical to one of the other four figures. 

Measurement tool 
Type of 
measurement 
tool 

i-DREAMS 
languages 

Time in 
minutes 

Costs 
Additional 
equipment 
needs 

Validity 

Cognitrone (COG) Test for 
concentration 
performance  

DUT ENG 8-17 Price quote 
upon 
application 

 

Validity of the test 
battery could be 
documented. FRE GER 

GRE POR 

 

Perception and attention functions battery (WAF)21 

The test captures sub-functions of attention such as alertness, vigilance and constant 

attention, focused attention, divided attention, selected attention or eye movements and visual 

scanning. A total of 42 subtests are available, which can be specified independently of each 

other or in any desired combination. 

For many of the used subtests, long and short forms are available. 

Measurement tool 
Type of 
measurement 
tool 

i-DREAMS 
languages 

Time in 
minutes 

Costs 
Additional 
equipment 
needs 

Validity 

Perception and 
attention functions 
battery (WAF) 

Special 
performance 
test 

DUT ENG 
5-30 Price quote 

upon 
application 

To conduct 
the auditive 
and cross-
modal 
subtests, a 
standardized 
USB 
headset is 
required. 

 No information 

FRE GER 

GRE POR 

                                                
19 https://www.schuhfried.com/test/atavt 
20 https://www.schuhfried.com/test/cog 
21 https://www.schuhfried.at/test/WAF 

https://www.schuhfried.com/test/atavt
https://www.schuhfried.com/test/cog
https://www.schuhfried.at/test/WAF
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Corporal Plus22 

The test is used in the field of fitness to drive assessments and medicine in Germany, 

occupational medicine, gerontology, clinical psychology and neuropsychology. 

The system offers a variety of diagnostic methods for measuring visual and combined visual-

auditory responsiveness, concentration, attention, spatial orientation, as well as working 

memory.  

The test can also be used for the dimension “Reactivity”. 

Measurement tool 
Type of 
measurement 
tool 

i-DREAMS 
languages 

Time in 
minutes 

Costs 
Additional 
equipment 
needs 

Validity 

Corporal Plus   DUT ENG 2-4 

per 
subtest 

€ 5,400 Is included 
in purchase 

The internal 
consistency for 
attention and 
spatial orientation 
is .96 and .99 
(Spearman/Brown) 

FRE GER 

GRE POR 

 

d2-R 

The d2-R23 is the electronic form of one of the most widely-used measures of attention – 

particularly visual attention – throughout Europe. It is not only used within clinical and 

educational settings, but also within the transport sectors. 

With d2-R the ability of attention and concentration can be tested quickly, reliably and with 

validation in individual or group settings. Additionally, the test integrated the rapidity and 

accuracy of distinguishing similar visual stimuli. Among other fields of application, d2-R is 

suitable for the use in driver assessments. 

Measurement tool 
Type of 
measurement 
tool 

i-DREAMS 
languages 

Time in 
minutes 

Costs 
Additional 
equipment 
needs 

Validity 

d2-R   DUT ENG 9-15 ca.  
€ 2.600 

- Consistently values 
of at least .77 for 
concentration, 
rapidity and 
accuracy indicate a 
high validity 

FRE GER 

GRE POR 

 

Test of Variables of Attention (TOVA) 

TOVA24 is a culture- and language-free computerised and objective measure of attention and 

inhibitory control. It calculates response time variability (consistency), response time (speed), 

commissions (impulsivity), and omissions (focus and vigilance). The test helps to assist in the 

assessment and evaluation of treatment for attention deficits, including attention-

deficit/hyperactivity disorder (ADHD). However, as TOVA is not used in the field of fit to drive 

assessments it may not be applicable for calculating a driver tolerance zone.  

 

 

 

                                                
22 https://www.testzentrale.de/shop/psychometrisches-testsystem.html 
23 https://www.hogrefe.co.uk/shop/d2-test-of-attention-revised.html 
24 https://www.tovatest.com/ 

https://www.testzentrale.de/shop/psychometrisches-testsystem.html
https://www.hogrefe.co.uk/shop/d2-test-of-attention-revised.html
https://www.tovatest.com/
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Measurement tool 
Type of 
measurement 
tool 

i-DREAMS 
languages 

Time in 
minutes 

Costs 
Additional 
equipment 
needs 

Validity 

Test of Variables of 
Attention (TOVA)  

Computerised 
test 

DUT ENG 10-15 Ca.  
€ 3,500  

Included in 
purchase - 
use on 
multiple 
computers 
possible 

  

FRE GER 

GRE POR 

 

5.1.4 Readiness to take risks 

Among other things, risky behaviour can include driving while impaired, driving too fast for the 

conditions, tailgating, unsafe passing or lane changing. For instance, study results showed that 

drivers who were involved in traffic accidents or crashes the year before took more risks when 

driving (Iverson, 2004). However, risky driving is notably affected by sensation seeking as it 

correlates with a various number of unsafe driving practices and mistakes in driving (Linkov, 

2019). Most studies that focused on sensation seeking and risky behaviour showed positive 

relationships between sensation seeking and risky driving, with correlations between 0.30 and 

0.40 (Jonah, 1997). Below a selection of tests for measuring the readiness to take risks in 

traffic is listed: 

 

Vienna Risk Taking Test (WRBTV)25 

This test, as part of the Vienna Test System, assesses the willingness to take risks by 

examining 24 different types of traffic situations: speeding and overtaking situations, decision 

situations at intersections and traffic situations in bad or good weather conditions. Due to its 

everyday relevance, this objective personality test is successfully used in driver assessments. 

Measurement tool 
Type of 
measurement 
tool 

i-DREAMS 
languages 

Time in 
minutes 

Costs 
Additional 
equipment 
needs 

Validity 

Vienna Risk Taking 
Test (WRBTV) 

Objective 
personality test DUT ENG 

18 Price 
quote 
upon 
applicati
on 

- The significant 
correlations with 
the sensation-
seeking scales, the 
adventurousness 
scale, and self-
control confirm the 
construct validity. 

FRE GER 

GRE POR 

 

Sensations-Seeking Scale (SSS-V) 

A subscale of the SSS-V is dedicated to risk taking. See 5.2 for further details on the SSS-V. 

 

5.1.5 Self-appraisal 

Subjective driving skills are frequently assessed with self-reports and various studies have 

shown that a lot of drivers overestimate their own skills. Sundström (2008) pointed out that 

subjective driving skills should be assessed through a comparison with the actual driving skills 

in order to obtain indicators of reliability and validity. 

 

  

                                                
25 https://www.schuhfried.at/test/WRBTV 

https://www.schuhfried.at/test/WRBTV
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5.1.6 Hazard perception 

Perception of hazards and coping test (GECO)  

GECO26 is part of the Vienna Test System and is used for measuring the perception of hazards, 

the knowledge of specific dangerous situations in traffic as well as handling these situations. 

For this purpose, video-supported dynamic traffic situations are presented from the perspective 

of e.g. a bicyclist, a motorcyclist or a car driver. The respondents’ task is to recognize an 

immediate hazardous situation. Despite the fact that this performance test is not available in 

all of the i-DREAMS languages, it is not suitable for British participants due unfamiliarity of 

right side driving. 

Measurement tool 
Type of 
measurement 
tool 

i-DREAMS 
languages 

Time in 
minutes 

Costs 
Additional 
equipment 
needs 

Validity 

Perception of hazards 
and coping test 
(GECO) 

Special ability 
tests 

DUT ENG Ca. 40 Price 
quote 
upon 
applicati
on 

-   

FRE GER 

GRE POR 

 

5.1.7 Reactivity 

Reaction test (RT) 

The RT27 is a single test of the Vienna Test System and assesses the ability to react under 

simple stimulus constellations (simple and choice reactions). Individuals have to react as 

quickly as possible to optical or acoustic signals. Special norms are available for older drivers 

and professional drivers. 

Measurement tool 
Type of 
measurement 
tool 

i-DREAMS 
languages 

Time in 
minutes 

Costs 
Additional 
equipment 
needs 

Validity 

Reaction test (RT) Special ability 
test  

DUT ENG 5-10 Price 
quote 
upon 
applicatio
n 

+   

FRE GER 

GRE POR 

 

Corporal Plus 

See above “Attention regulation” for further details. 

Measurement tool 
Type of 
measurement 
tool 

i-DREAMS 
languages 

Time in 
minutes 

Costs 
Additional 
equipment 
needs 

Validity 

Corporal Plus   DUT ENG 2-4 

per 
subtest 

€ 5,400 Is included 
in purchase 

The internal 
consistency for 
attention and 
spatial orientation 
is .96 and .99 
(Spearman/Brown) 

FRE GER 

GRE POR 

 

5.1.8 Eye-hand coordination 

The ability to coordinate eye and hand when making small movements is important when 

driving. This ability can also be measured with help of the Two-Hand Coordination test. 

                                                
26 https://www.schuhfried.com/test/geco 
27 https://www.schuhfried.com/test/rt 

https://www.schuhfried.com/test/geco
https://www.schuhfried.com/test/rt
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Two-Hand Coordination (2HAND) 

2HAND28 assesses the two-dimensional visuomotor coordination between eye and hand as 

well as the coordination between the left and right hand. The subject has to move a red dot 

along a given track using either two control knobs or two joysticks. 

The test is included in the Vienna Test System and the task is language-free.  

Measurement tool 
Type of 
measurement 
tool 

i-DREAMS 
languages 

Time in 
minutes 

Costs 
Additional 
equipment 
needs 

Validity 

Two-Hand 
Coordination (2HAND) 

Special ability 
test  

DUT ENG 8-15 Price 
quote 
upon 
applicati
on 

-   

FRE GER 

GRE POR 

 

5.1.9 Visual perception and visual orientation 

Visual Pursuit Test (LVT) 

The LVT29 measures visual orientation performance and visual perception and is used among 

others in the field of fitness to drive assessments. The test presents a number of random and 

disorderly lines and the individual has to visually identify the end of a particular line as 

quickly as possible. LVT is language-free and special norms are available for professional 

drivers. 

Measurement tool 
Type of 
measurement 
tool 

i-DREAMS 
languages 

Time in 
minutes 

Costs 
Additional 
equipment 
needs 

Validity 

Visual Pursuit Test 
(LVT) 

Special ability 
test  

DUT ENG 5-25 Price 
quote 
upon 
applicati
on 

- Coefficient of 
internal 
consistency is 
r=.96; n=785 
(Kubinger & 
Ortner, 2010) 

FRE GER 

GRE POR 

 

Perception and attention functions battery (WAF) 

The test battery includes subscales for eye movements and visual scanning. 

The subject’s task is to search a 6x6 matrix of similar visual stimuli and decide whether a 

previously defined stimulus is present or not. 

See above “Attention regulation” for further details on WAF 

Measurement tool 
Type of 
measurement 
tool 

i-DREAMS 
languages 

Time in 
minutes 

Costs 
Additional 
equipment 
needs 

Validity 

Perception and 
attention functions 
battery (WAF) 

Special 
performance 
test 

DUT ENG 5-30 Price 
quote 
upon 
applicatio
n 

A stand-
ardized 
USB head-
set is 
required. 

 No information 

FRE GER 

GRE POR 

 

Test of Attentional Performance (TAP-M) 

One of the nine subscales measures the individual’s visual field. 

See above “Attention regulation” for further details. 

                                                
28 https://www.schuhfried.com/test/2hand 
29 https://www.schuhfried.com/test/lvt 

https://www.schuhfried.com/test/2hand
https://www.schuhfried.com/test/lvt
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Measurement tool 
Type of 
measurement 
tool 

i-DREAMS 
languages 

Time in 
minutes 

Costs 
Additional 
Equipment 
needs 

Validity 

Test of Attentional 
Performance (TAP-M) 

Motor 
response test DUT ENG 

Ca. 45 1,000 
EUR for 
1st 
licence 

Installation 
on local PC 

Validation of the 
test battery was 
supported by 
several European 
institutions being 
members of the 
European project 
"AGILE" 

FRE GER 

GRE POR 

 

Line Orientation Test (LAT) 

The Line Orientation Test30 captures the visual orientation ability, which is an essential 

component of spatial-perceptual functions. The test is used when visual orientation ability is 

relevant for fitness to drive assessments.  

Measurement tool 
Type of 
measurement 
tool 

i-DREAMS 
languages 

Time in 
minutes 

Costs 
Additional 
equipment 
needs 

Validity 

Line Orientation Test 
(LAT) 

Special ability 
test  

DUT ENG 4-5   -  No information  

FRE GER 

GRE POR 

 

Motor Free Visual Perceptual Test Version 4 (MVPT-4) 

The MVPT-431 is used to assess the visual-perceptual ability via a series of visual-perceptual 

tasks that do not require a motor response from the individual.  

Measurement tool 
Type of 
measurement 
tool 

i-DREAMS 
languages 

Time in 
minutes 

Costs 
Additional 
equipment 
needs 

Validity 

Motor Free Visual 
Perceptual Test 
Version 4 (MVPT-4) 

Special ability 
test 

DUT ENG 20-25 195$ for 
25 forms 

-  No information  

FRE GER 

GRE POR 

 

Corporal Plus 

See above “Attention regulation” for further details. 

Measurement tool 
Type of 
measurement 
tool 

i-DREAMS 
languages 

Time in 
minutes 

Costs 
Additional 
equipment 
needs 

Validity 

Corporal Plus   DUT ENG 2-4 

per 
subtest 

€ 5,400 Is included 
in purchase 

The internal 
consistency for 
attention and 
spatial orientation 
is .96 and .99 
(Spearman/Brown) 

FRE GER 

GRE POR 

 

                                                
30 https://www.schuhfried.com/test/lat 
31 https://www.wpspublish.com/mvpt-4-motor-free-visual-perception-test-4  

https://www.schuhfried.com/test/lat
https://www.wpspublish.com/mvpt-4-motor-free-visual-perception-test-4
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5.2 Personality traits 

A careful and thoughtful driving behaviour is crucial for traffic safety. Personality factors 

are known to have an impact on road safety. Although in many studies the isolated effect 

of e.g. sensation seeking is rather small, it is also beyond dispute (Goldenbeld & van 

Schagen, 2016; Sümer et al., 2003). The following scales and questionnaires are frequently 

used to measure safety relevant personality traits. 

 

Sensation Seeking Scale (SSS-V) 

The SSS (form V) is a normed questionnaire (Zuckerman, 2007). As sensation seeking is a 

multidimensional construct, the SSS includes four different subscales, which measure thrill and 

adventure seeking (TAS), disinhibition (Dis), experience seeking (ES) and boredom 

susceptibility (BS).  

Each subscale contains 10 items. The SSS total score of all 40 items is used to measure 

sensation seeking as an overall score. Regarding the internal consistency of the subscales, 

the Cronbach’s alpha for the English version were α = 0.81 and α = 0.82 for the TAS in males 

and females; α = 0.78 and α = 0.77 for the DIS; α = 0.65 and α = 0.59 for the BS; and α = 0.65 

and α = 0.67 for the ES (Gianfranchi et al., 2017). 

A German version of the SSS-V is available. Further language versions were not identified. 

Since the SSS-V is text-based a translation into other i-DREAMS languages would be possible. 

However, validity scores apply only to the English version.  

 

Brief Sensation Seeking Scale (BSSS) 

The BSSS is based on the Sensation Seeking Scale and was developed by Hoyle et al. (2002). 

The BSSS consists only of 8 questions and still carries reasonable reliability and validity (Hoyle 

et al., 2002). Limitations: 

 There are different answer formats of the short German and English version 

 There is no evidence that BSSS is used in fitness to drive assessments. 

 

Deffenbacher Driving Anger Scale (DAS)  

The DAS is a 14-item questionnaire and the most widely used instrument to measure trait 

driving anger. The items include brief descriptions of potentially anger-provoking driving 

situations (e.g., sticking in a traffic jam), and respondents rate the degree to which each 

situation would anger them using a five-point Likert scale (Deffenbacher et al, 2016; 

Deffenbacher et al., 1994). 

 

Propensity for Angry Driving Scale (PADS)  

The 19-items questionnaire describes driving scenarios that are likely to provoke anger and 

respondents indicate how they would react to each situation by selecting one of four options 

ranging from mild to extreme. The PADS has a very good internal consistency (as=.88 and 

.89) and a four-week test-retest reliability (r=.91). The scale significantly (>.05) predicted 

moving tickets, minor accidents, aggressive driving, risky driving, and maladaptive driving 

anger expression, above and beyond gender, miles driven per week, and trait anger (Dahlen 

& Ragan, 2004). 
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State-Trait-Anger Expression Inventory (STAXI-2) 

The STAXI-232 is a 57-item inventory which measures the experience, expression, and control 

of anger. It consists of the following subscales: state anger, trait anger, anger expression - out, 

anger expression - in, anger control - out, anger control - in, and anger expression index. 

However, there is no indication that the STAXI-2 is used in fitness to drive assessments. 

 

UPPS-P Impulsive Behavior Scale 

The UPPS-P is a 59 item self-assessment scale with the five subscales urgency, 

premeditation, perseverance, sensation seeking, and positive urgency, used for adolescents 

and adults (12 years and older). While the scale is not directly measuring impulsivity as a trait, 

it assesses personality aspects which lead to impulsive behaviour. Acts and incidents are rated 

on a four-point scale for their frequency during the past six months (Whiteside et al., 2005).  

 

5.3 Habitual driving behaviour 

A multitude of questionnaires exist which try to capture self-reported past or habitual 

behaviours of drivers. One of the most frequently used questionnaires is, for example, the 

Manchester Driver Behaviour Questionnaire (DBQ). On the other hand, many project teams 

and research groups have introduced their own items depending on the specific research 

question. One of the recent large-scale surveys in the domain of road safety is the ESRA 

initiative (Meesman et al., 2019), which used a combination of various items from established 

questionnaires with slight variations.  

With regards to the behaviours speeding, tailgating, fatigued driving, impaired and 

distracted driving, the DBQ as well as the ESRA questionnaire used relevant items. Although 

simply using self-constructed or adapted items is feasible and legitimate, using established 

items to query those behaviours from i-DREAMS participants allows for comparability with 

other data sets. 

 

Manchester Driver Behaviour Questionnaire (DBQ) 

The DBQ is a self-report questionnaire as a measure of deviant driving behaviours. The 

questionnaire exists in numerous different versions using various combinations of items. The 

original version consists of 50 items, assessed through a six-point Likert scale ranging from 

0=never to 5=nearly all the time. The short version consists of 24 items investigating general 

factors, aggressive violations, ordinary violations, slips and errors (de Winter & Dodou, 2010). 

 

For past and habitual aggressive and other risky driving behaviours, various dedicated 

questionnaires are available: 

 ADBQ (Aggressive Driver Behaviour Questionnaire) 

 DDDI (Dula Dangerous Driving Index, dimension 'aggressive driving', ‘risky driving’) 

 DBQ (Manchester Driver Behaviour Questionnaire, subscale ‘aggressive violations’) 

 DAX (Driving Anger Expression Inventory) 

 AVIS (Aggressive driving behaviour) 

 

                                                
32 https://www.testzentrale.de/shop/state-trait-anger-expression-inventory-2tm.html 

https://www.testzentrale.de/shop/state-trait-anger-expression-inventory-2tm.html


D2.1 State of the art on measuring driver state and task complexity in real-time 

©i-DREAMS, 2020  Page 67 of 143 

5.4 Health status 

The general health status of a driver is of utmost importance as a prerequisite to safely 

participate in traffic and steer a vehicle. This importance is also reflected in the mandatory 

health check before talking the driving test in many countries.  

There are many standard tests available for screening neurological symptoms. Some of them, 

however, are designed to allow for early diagnosis of dementia and therefore are normed for 

the elderly.  

 

5.4.1 Neurologic assessment 

Montreal Cognitive Assessment (MoCA) 

The MoCA33 test is a proven cognitive screening tool for illnesses, including Alzheimer’s 

disease; Parkinson’s disease; VCI/Stroke; ALS; Sleep behaviour disorder and others. The test 

has been validated for 55-85-year olds. There is no indication that MoCA is used in fitness to 

drive assessments. 

 

CERAD-Plus 

The neuropsychological test battery CERAD-Plus consists of the following tests: Verbal fluidity 

(Animals), Boston Naming Test (15 Items), Mini Mental Status Examination, Word list Learning 

– recalling – recognizing; Copying of Figures; Trail Making Test A and B; Phonematic fluidity 

(Aebi, 2002). 

 

Mini Mental Status Examination (MMSE) 

The Mini Mental Status Test was published by Folstein et al. (1975) and designed to provide 

a routine clinical screening tool for detecting cognitive deficits. However, the test is not 

appropriate to detect mild cognitive impairment. The test is used for persons older than 65 

years. 

 

Boston naming test 

This test measures confrontational word retrieval in individuals with aphasia or other language 

disturbance caused by stroke, Alzheimer's disease, or other dementing disorders (Kreutzer et 

al., 2018). 

 

Corporal Plus (see “Attention regulation” for further details) 

 

DemTect 

This test focuses on the main symptom of Alzheimer's dementia, i.e. memory and decelerated 

memory and consists of five task demands: word list task, number transcoding task, word 

fluency task, digit span reverse, and delayed recall of the word list. DemTec is suited to detect 

minor cognitive losses (Kalbe et al., 2004). 

Measurement 
tool 

Type of 
measurement 
tool 

i-DREAMS 
languages 

Time in 
minutes 

Costs 
Additional 
equipment 
needs 

Validity 

DemTect   possible to 
translate 

8-10 Free -  No information 

                                                
33 https://www.mocatest.org/ 

https://www.mocatest.org/
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Short Blessed Test (SBT) 

The SBT34 is a brief performance-based screening instrument to identify elderly persons with 

cognitive dysfunction (quicker than MMSE). The SBT provides good diagnostic test 

characteristics and overlaps with MMSE results. 

Measurement 
tool 

Type of 
measurement 
tool 

i-DREAMS 
languages 

Time in 
minutes 

Costs 
Additional 
equipment 
needs 

Validity 

Short Blessed 
Test (SBT) 

  possible to 
translate 

5-10 Free - Good 

 

Test for an early detection of dementia (TFDD)  

The test for an early detection of dementia consists of two parts. The first part serves as an 

early diagnosis of dementia. In the second part, an assessment of depression is conducted. 

The person concerned should assess oneself, followed by an assessment of a medical 

practitioner or a close person (Ihl et al., 2000). The TFDD is assessed as not applicable for i-

DREAMS. 

 

ADAS-cog 

The ADAS is a scale for assessing the progression of dementia symptoms. It covers cognitive 

performance (orientation, memory, naming objects, following instructions), but also the 

behaviour during the interview and psychopathological symptoms (Mohn et al., 1983; Rosen 

et al., 1984). As interviews and behaviour observations are part of ADAS, the test seems not 

practicable for i-DREAMS. 

 

Gross Impairments Screening Battery (GRIMPS) 

The GRIMPS35 is a tool for screening gross impairments in physical and perception functions 

that are essential for safe driving. It is a collection of individual tests targeted for persons aged 

72+. The battery consists of various tests for the two domains 1) physical measures (Rapid-

pace walk, foot-tap test, head-neck rotation and arm reach) and 2) perceptual-cognitive 

measures (Motor-free Visual Perception Test, Trail Making Test Part A and B, Cued/delayed 

Recall, Scan Test and Visual Acuity).  

Measurement 
tool 

Type of 
measurement 
tool 

i-DREAMS 
languages 

Time in 
minutes 

Costs 
Additional 
equipment 
needs 

Validity 

Gross 
Impairments 
Screening 
Battery 
(GRIMPS) 

 Test battery DUT ENG 15 $40/kit  Various  No information 

FRE GER 

GRE POR 

 

Assessment of Driving-Related Skills (ADReS) 

The ADReS is a collection of individual tests and a screening tool for physicians. It uses two 

tests to determine visual abilities: the confrontational field testing and the Snellen chart to 

determine visual acuity. To assess motor ability, the test uses three measures: (1) the Rapid 

                                                
34 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3080244  
35 https://one.nhtsa.gov/people/injury/olddrive/safe/01c02.htmhttps://dict.leo.org/franz%C3%B6sisch-
deutsch/ 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3080244
https://one.nhtsa.gov/people/injury/olddrive/safe/01c02.htm
https://dict.leo.org/franz%C3%B6sisch-deutsch/
https://dict.leo.org/franz%C3%B6sisch-deutsch/
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pace walk, (2) range of motion testing, and (3) the manual muscle test. To screen for cognitive 

deficits that might affect driving ability, the test includes the Clock Drawing Test and the 

Trailmaking Test, Part B. However, a study from the American Medical Association (AMA), 

with support from the National Highway Traffic Safety Administration (McCarthy & Mann, 2006) 

showed that the ADReS may not be an efficient predictor in identifying older drivers who may 

or may not be at an increased risk for unsafe driving. 

 

5.4.2 Musculoskeletal system 

Rapid-Pace Walk (lower limb mobility), Questionnaire/self-report 

For measuring the lower limb mobility, a three-meter path is marked on the floor. The individual 

is asked to walk the path, turn around, and come back to the starting point as quickly as 

possible. The test is scored by the total number of seconds required to complete the exam. 

The cut-off scores, as reported in Staplin, et al. (2003), are more than 7.5 seconds to complete 

the walk indicated they were 2.5 times more likely than age-matched controls to be involved in 

an at-fault crash. Those with completion times greater than nine seconds had a three-fold 

increased risk of being in an at-fault car accident.  

Alternatively, the participants can be asked to indicate any known musculoskeletal conditions 

or pain. 

 

5.4.3 Cardio-vascular diseases 

While there are plenty of medical procedures and tests to assess the cardio-vascular system, 

such as blood tests, ECG, MRI and CT, stress tests etc., a medically sound diagnosis is not 

required for the i-DREAMS participants. An open question on known cardio-vascular 

conditions or pain will be sufficient for this purpose. 

 

5.4.4 Indication of fatigue and sleepiness 

Epworth Sleepiness Scale (ESS) 

The ESS is a quick test and designed to check the daytime sleepiness to see if the individual 

is getting enough sleep at night (Johns, 1991). Individuals are asked to score the likelihood of 

falling asleep in certain situations and an overall score as an indication of excessive daytime 

sleepiness is provided. 

Measurement tool 
Type of 
measurement 
tool 

i-DREAMS 
languages 

Time in 
minutes 

Costs 
Additional 
equipment 
needs 

Validity 

Epworth 
Sleepiness Scale 

 questionnaire possible to 
translate 

5 free -  The questionnaire had a 
high level of internal 
consistency as 
measured by 
Cronbach's alpha (0.88). 
Reliability (r = 0.82).  

 

Berlin Questionnaire 

The Berlin questionnaire is a self-administered 10-items-questionnaire that was developed to 

identify subjects with obstructive sleep apnea (OSA) (Tan et al., 2017). 

Measurement tool 
Type of 
measurement 
tool 

i-DREAMS 
languages 

Time in 
minutes 

Costs 
Additional 
equipment 
needs 

Validity 

 questionnaire DUT ENG 5 free -  
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Berlin 
Questionnaire 

FRE GER Scoring test-retest 
reliability: 0.74 – 0.98 
(Cohen's kappa) (2-4). 
Scoring Internal 
consistency: 0.68 - 0.98 
(Cronbach's alpha) (2-5)  

GRE POR 

 

Stanford Sleepiness Scale (SSS) 

The SSS is a subjective measure of sleepiness, frequently used for both research and clinical 

purposes (Connor et al., 2002). The questionnaire measures sleepiness at a specific moment 

in time, which can be relevant in simulator studies. 

 

Karolinska Sleepiness Scale (KSS) 

The KSS (Åkerstedt & Gillberg, 1990), is a 9-point, one dimensional scale ranging from 

‘extremely alert’ to ‘very sleepy’, ‘great effort to stay awake’ and ‘fighting sleep’. It KSS has 

been validated against EEG variables (Kaida et al., 2006; Sagaspe et al., 2008) and is 

considered a reliable tool for evaluating sleepiness, both in a laboratory environment and in 

field studies (Åkerstedt, Anund, Axelsson & Kecklund, 2014). 

 

Chalder Fatigue Scale (CFS) 

The Chalder Fatigue Scale is designed to measure the severity of fatigue in adults. The 14-

item instrument is indicated for use in both clinical and research settings. Symptoms examined 

by the scale can be divided into two categories: physical and mental fatigue (Chalder et al., 

1993). The scale has been used in studies of various diseases and is explicitly not 

recommended for fitness to drive assessment. 

 

In addition to standardized tests/questionnaires, items on overall sleep quality, working 

patterns and known sleep apnoea can be useful. 

 

5.4.5 Vision impairment 

Vision assessments are conducted, for example, with high and low contrast acuity charts or 

the so-called ‘Snellen E Chart’. The chart is placed on a wall at a 20 feet distance. Also, the 

participant’s driver licence may contain information on visual impairment. According to the ICD-

10, normal vision is given when the Corrected Distance Visual Acuity (CDVA) ≥ 3/10.  

 

5.4.6 Hearing impairment 

An example of a hearing test is the Pure tone audiometry test. However, asking about known 

conditions or problems with hearing may be a simpler method. 

 

5.5 Socio-demographic factors and driving experience 

Obtaining socio-demographic variables is fairly straight-forward. Age, gender, nationality, issue 

date of driver license and alike are most efficiently asked in open questions. For level of 

education, socio-economic status and occupation, the provision of categories, from which the 

participants can choose from, is sensible. 

However, ‘culture’ or ‘cultural identity’ are multifaceted constructs with various approaches for 

operationalisation. Cultural values are reported to be associated with road fatalities. An 

established and time saving survey to measure cultural values is the Short Schwartz’s Value 
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Survey (SSVS), with the value dimensions power, achievement, hedonism, stimulation, self-

direction, universalism, benevolence, tradition, conformity and security (Lindeman & 

Verkasalo, 2005). Nationality may be a proxy of ‘culture’, however, does not account for sub-

cultural phenomena.  

Driving experience is a crucial factor for safety. It is reflected in the ability to detect hazards 

(Shinar & Oppenheim, 2011). It may also be accounted for by merely collecting the participants’ 

average kilometrage and years of active driving. 

 

5.6 Conclusion & recommendations  

One outcome of the i-DREAMS project will be a research database with rich information of 

simulator and on-road drives of hundreds of participants. Since the database aims to facilitate 

future research, it can be argued that the more known about the test subjects, the better. 

However, this is a question of time, resources and also reasonableness towards participants 

volunteering to support i-DREAMS’ research. Thus, a selection of variables for a one-time 

measurement before or during the trials has to be made. Table 12 displays all variables 

recommended for one-time measurement (second column), a suggestion how to measure 

(third column) them and the potential use of the variables.  

 

Table 12: Driver characteristic variables recommended to collect from i-DREAMS participants, suggested 
measurement method and potential purpose of use in the project highlighted in green. 

Category Construct 

Recommended 
measurement 

method 
Potentially 

include in STZ 

Validation of 
inter-individual 
differences in 

real-time 
measure, 
control 

variables 

Potential for 
customized 
intervention 

Competences Emotional regulation PERCI    

Stress regulation DSI    

Attention regulation Trail making test 
(Trail A) 

   

Risk-taking - SSS-V (sub-scale) 

- DBQ items 

   

Hazard perception GECO    

Reactivity RT    

Visual perception, 
orientation 

LVT    

Personality Sensation seeking BSSS    

Anger proneness DAS    

Past and habitual 
driving behaviour 

Speeding - DBQ subscale 
‘ordinary 
violations’ 

- ESRA2  

   

Tailgating - DBQ item 23 
- ESRA2  

   

Fatigued driving - ESRA2    

Distracted driving - ESRA2    

Aggressive driving - ADBQ subscale 
‘conflict behavior’ 
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Category Construct 

Recommended 
measurement 

method 
Potentially 

include in STZ 

Validation of 
inter-individual 
differences in 

real-time 
measure, 
control 

variables 

Potential for 
customized 
intervention 

- DDDI, subscale 
‘aggressive 
driving' 

Health, diseases Neurological Question on any 
known conditions 

   

Musculoskeletal Question on any 
known conditions 

   

Cardio-vascular Question on any 
known conditions 

   

Fatigue, sleepiness - Epworth 
Sleepiness Scale 

- Berlin 
Questionnaire (Sleep 
apnoea, shift work, 
professional driving) 

   

Vision impairment - Snellen chart 
- Question on any 

known conditions 

   

Hearing impairment Question on any 
known conditions 

   

Socio-
demographics 

Age, gender, 
nationality 

Open question    

Level of education, 
socio-economic 
status, occupation 

Closed question 
(provide response 
options) 

   

Cultural identity SSVS    

Experience Average 
kilometrage, issue 
date of driver 
licence, professional 
driving 
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6 Driver behaviour – Indicators, methods and technology 

for real-time monitoring 

6.1 Selection of the variables, technologies and metrics to review 

The aim of this chapter is to have a comprehensive look at which variables are related to driver 

behaviour, which can be measured by on-board devices, which technologies provide these 

measurements, and which measured indicators/parameters provide useful information. 

The starting point for the review is the Appendix 1.a of the proposal, where some of the 

variables, metrics and technologies to be addressed are highlighted. Table 13 summarizes this 

information with regard to operator behaviour. Specifically, for each ADAS the type of vehicle, 

road infrastructure, traffic and environmental conditions have been reported. 

 

Table 13: Overview of variables, metrics and data collection tools as reported in Appendix 1-a of i-DREAMS 
proposal 

 Variable Metrics Car Bus Truck Train 

Operator 
behaviour 

Longitudinal 
movement 

% exceedance 
speed limit 

OBD/SP OBD/SP OBD/SP SIM/OTMR 

ACC/DEC OBD/SP OBD/SP OBD/SP SIM/OTMR 

Longitudinal g-
force 

SP SP SP NA 

Headway 
distance 

MBE MBE MBE NA 

Lateral 
movement 

Lateral 
position 

OBD/SP OBD/SP OBD/SP NA 

Lateral g-force SP SP SP NA 

Edge line 
crossing 

MBE MBE MBE NA 

where OBD means On Board Diagnostics, SP indicates Smart Phones, MBE stands for MoBilEye, SIM is 
the train simulator, OTMR indicates the On-Train Monitoring Recorder, while NA stands for Not Applicable. 

 

6.2 Reviewing method 

A screen-based reviewing method has been worked out to analyse the state-of-the-art about 

data collection tools and their measurements. 

four online databases were checked: Google Scholar, Science Direct, Scopus and Web of 

Science. The following keywords and combinations of them (Table 14) were searched: 

Table 14: Keywords and their combination used during the screen-search 

Measurable parameters longitudinal driving behaviour 

automotive telematics 

road speeding measurements 

harsh braking measures 

distance control system 

adaptive cruise control 

forward collision warning 

objective measures OR in-vehicle device OR in-vehicle data OR 
CarChip OR global positioning system OR GPS OR on-board 
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diagnostic system OR OBDII OR intelligent speed adaptation design 
OR ISA device OR electronic device 

(objective measures OR in-vehicle device OR in-vehicle data OR 
CarChip OR global positioning system OR GPS OR on-board 

diagnostic system OR OBDII OR intelligent speed adaptation design 
OR ISA device OR electronic device) AND (driving behaviour OR 

driving behavior OR driving exposure OR speed OR driving distance 
OR on-road behavio*) 

 

A first selection of the papers was conducted by checking the title and then abstract. After this, 

the selected papers were read and 31 of them were taken into account for further evaluations. 

The considered papers belong mainly to three different fields: safety, sustainable driving and 

insurance. 

The majority of the papers focus on car drivers, with only a few of them also considering the 

issues related to light duty vehicles. 

 

6.3 Advanced Driver Assistance Systems: a brief overview. 

In accordance to (Yannis & Antoniou, 2000) (Wiethoff, Oei, Penttinen, Anttila, & Marchau, 

2002) it is possible to recognize 2 different intervention levels and 3 distinct phases of the 

accident process. The two different intervention levels are the tactical and the operational level. 

The tactical level consists of executing manoeuvres, for example car-following, overtaking and 

intersection approaching (Wiethoff et al., 2002), whereas the operational level is related to the 

task of keeping the car on the road by selecting the suitable speed, steering etc. (Wiethoff et 

al., 2002). The three stages in which the accident process can be divided are: pre-crash, crash 

and post-crash (Yannis & Antoniou, 2000). Focusing on driving behaviour, the ADAS which 

will be reviewed belongs to the tactical level support functions. 

Specifically, the ADAS which aid in longitudinal and lateral controlling are: Speed Control (ISA), 

Advanced Cruise Control (ACC) and Road Departure/Lane Departure Collision Avoidance. 

 

Speed Control or Intelligent Speed Adaptation (ISA) ranges from recommending speed to 

reducing it, and is usually integrated with traffic control systems. As stated by Jesty et al. (1999, 

quoted from Wiethoff et al., 2002) an ISA system should provide information about various 

aspects of the road network, display the current speed limit and offer the ability to keep the 

vehicle below the speed limit. 

Normally, this kind of system can be implemented on passenger vehicles as well as heavy 

vehicles and buses, and should work on each type of road. The technologies needed by an 

ISA system are sensors to measure vehicle’s speed and sensors to detect speed limits. 

 

Advanced Cruise Control (ACC) works over 40 km/hr and aims at maintaining a safe 

separation between the vehicles by sensing the presence and relative speed of moving 

vehicles and adjusting the travelling speed (Yannis & Antoniou, 2000). 

Also, this system can be implemented in both passenger and heavy vehicles and can work on 

all road types. Typically used tools are radar, lidar and video cameras. 

 

Road departure/Lane departure collision avoidance’s goal is to assist the driver by 

detecting and tracking the lane or road edge and by determining the speed which the vehicle 

can be safely kept on the road (Yannis & Antoniou, 2000). Used devices are often radar, lidar, 
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lasers, infrared and video sensors or combinations of the same (Tewolde, 2012; Thuy & León, 

2010). 

 

6.4 Data collection tools 

During the review of the existing and available technologies to control driver behaviour, 15 

different kinds of sensors and systems have been selected. 

The technologies that are applied – not only in academic field, but also in the commercial one 

– are: cameras, smartphones with their embedded sensors (i.e. gyroscopes, accelerometers 

and magnetometers), the OBD-II system, GPS, radar, laser, lidar, steering angle sensors, 

thermal radiation sensors, infrared sensors, brake/gas pedal sensors, yaw rate sensors, digital 

tachograph, potentiometer and inertial sensors. 

In the following section each tool will be briefly described, highlighting, where available, 

information relating to what the tool measures, its advantages and limitations, and the context 

where it has been applied. 

 

Cameras represent a technology which is widely applied in Intelligent Transportation Systems 

(ITS). They are used to monitor the forward scene (Dagan, Mano, Stein, & Shashua, 2004; 

Stein, Mano, & Shashua, 2003), as well as to detect lane boundaries (Goldbeck & Huertgen, 

1999). 

In (Dagan et al., 2004) and (Stein et al., 2003) a forward-facing camera is used to create a 

combination of Forward Collision Warning, Lane Detection Warning and Headway Monitoring 

systems, and it provides range, relative speed and lane position data. Also, the inputs obtained 

by the camera are used to calculate Time-to-Collision (TTC), which is considered to efficiently 

indicate the changing from a normal driving situation to a dangerous one. 

A CMOS video camera is used in (Goldbeck & Huertgen, 1999) to detect and track lane 

boundaries, by connecting it to the vehicle’s CAN bus. 

Also MobilEye (Dagan et al., 2004)(“Mobileye Collision Avoidance System | Mobileye for 

Fleets,” n.d.)(Ellison, Greaves, & Daniels, 2012) makes use of cameras for its IT system, 

especially using a forward facing camera to detect the headway to the lead vehicle. 

Cameras can be installed in the majority of vehicles. Normally, cameras work on paved roads, 

where road markings are clearly visible (“Mobileye Collision Avoidance System | Mobileye for 

Fleets,” n.d.) and bad weather conditions can affect the system’s capabilities (“Mobileye 

Collision Avoidance System | Mobileye for Fleets,” n.d.). In lane detection systems presented 

in (Goldbeck & Huertgen, 1999) authors assert that using CMOS cameras their system can 

also work during adverse weather conditions, i.e. diffuse daylight on dry asphalt, but also rain 

and back-lighting situations on wet pavement. Also, it works both on highways and country 

roads, even though one boundary leaves the scene (Goldbeck & Huertgen, 1999). 

Using cameras has several advantages, including, the substantial amount of information 

obtained, the low cost and operation power, the absence of a sweep time and their non-

invasive features (Wijesoma, Kodagoda, & Balasuriya, 2004). Limitations include poor visibility 

issues, such as shadows, bad lighting and weather. Also complex driving environments and 

missing lane markings make feature extraction challenging (Wijesoma et al., 2004) and 

overexposure can cause loss of information. Furthermore, the need of an exact and complex 

calibration has to be taken into account (Thuy & León, 2010). 

Smartphones, with their embedded sensors, i.e. gyroscopes, accelerometers and 

magnetometers, are tools often used by insurers to control driving behaviour. In (Wahlstrom, 

Skog, & Handel, 2017) Wi-Fi, Bluetooth and GNSS smartphone sensors are used for 

positioning, so that where GNSS signals are unavailable, the others can be applied. 
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Skog et al., 2014; Wahlstrom et al., 2017; Wahlström, Skog, & Händel, 2015 deal with 

smartphone technologies for vehicle telematics and highlight the opportunity of measuring 

position, speed, course and timestamps, horizontal acceleration and vehicular angular velocity. 

Regarding smartphones, context information is scarce. Also, since they are portable devices, 

they are more related to the person who carries them, than to the car. This implies that these 

devices are not directly linked to the car structure, well-fitting many vehicle types. Moreover, 

no indications about particular road infrastructures are reported in literature  

Smartphone solutions are increasing in vehicle telematics because they are scalable, 

upgradable and cheap. Also, they can provide instantaneous driver feedbacks and have many 

embedded sensors. Issues that have to be considered are the low quality of the sensors, which 

are not primarily selected for vehicular measurements. Moreover, smartphones are not fixed, 

leading to issues as regarding relative orientation, driver/passenger recognition and GNSS 

coverage. 

OBD-II is an in-vehicle sensor system, which is nowadays compulsory on most vehicles, 

designed to record data about the driving patterns and engine performance. In Rolim et al. 

(2014) it has been used with CarChipPro – a data logger – to collect vehicle dynamics. The 

data gathered include the number of trips, travel time, distance, speed, time in each speed 

band, brakes and accelerations, as well as mass air flow, engine speed, acceleration, fuel cut 

off and VSP distribution. In Wahlstrom et al. (2017) OBD-II is mentioned because data provided 

by this system can be sent to a smartphone, allowing an integrated network to be created. The 

study also adds to the already mentioned parameters throttle position and other engine 

performance magnitudes. In Cai et al. (2010) the OBD system is integrated with GPS and a 

wireless communication component to create a system warning the driver of dangerous 

situations. OBD measurements are also used in the calculation of fuel consumption and 

emissions by monitoring driving performance (D’Orey & Ferreira, 2014).OBD-II has been 

tested both in city contexts and on highway segments (Cai et al., 2010) and has been applied 

to both cars and light duty vehicles. In (Rolim et al., 2014) it has been integrated in vehicles 

driven by participants on their daily usual routes. 

Among the important advantages of OBD-II there is the non-subjectivity of measurements to 

multipath errors and the use of fixed sensors (Wahlstrom et al., 2017). 

Global Positioning System (GPS) is also a widespread utilized technology for ITS, both alone 

and in combination with other sensors. Ellison et al. (2012) applied GPS on participant cars 

driving on their normal routes, with the aim of measuring speeds, speed limits, location, date 

and time. (Greaves & Ellison, 2011) uses GPS devices on motorbikes and to investigate the 

willingness of motorists to speeding. In (Cai et al., 2010) GPS devices are used in combination 

with OBD system to test ABS activation alert, conducting experiments on both urban and 

highway roads. (Thuy & León, 2010) introduces a combined system of Differential Global 

Positioning System (DGPS), lidar and an IMU to develop a lane detection system, while (Ryu, 

Rossetter, & Gerdes, 2002) introduces a system based on GPS antennas to determine vehicle 

sideslip angle, longitudinal velocity and attitude. In (ElBatt, Goel, Holland, Krishnan, & Parikh, 

2006) a system based on GPS and wireless communication devices is proposed to warn 

against forward collision. 

From literature it emerges that GPS is widely used on various kinds of vehicles, from cars to 

motorcycles, and are mainly tested on daily routes. 

Among the concerns of GPS devices installed on cars there is the need for power, and issues 

with privacy and signal jamming (“Advantages and Disadvantages of GPS and Telematics 

Systems for Vehicles - National Motorists Association,” n.d.). 

Radar, laser and lidar technologies are mainly used for lane detection and since they are 

quite similar, they can be discussed in the same frame. In (Thuy & León, 2010) a 1D lidar is 
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used in combination with an IMU and DGPS to detect the lane, while in (Wijesoma et al., 2004) 

the authors present a radar system to detect curb position, together with a wheel encoder and 

a fiber-optic gyroscope to achieve vehicle speed and yaw angle respectively. In (Regan, 

Gustav Tingvall, Healy, & Williams, 2000) a commercially available radar device is used to 

transmit and receive signals in order to determine speed and distance of other vehicles/objects 

from the one, where it is installed. The 1-D lidar mounted on the vehicle’s front bumper and 

sloped towards the street, introduced in (Thuy & León, 2010) is used to develop a lane 

detection and tracking system, while in (Wijesoma et al., 2004) a laser device is installed to 

detect road curbs. Furthermore, among radar and laser devices, distance sensors are quoted 

in the review carried out in (Lin et al., 2014). They are part of the system developed by UTDrive 

and can be grouped by long distance (30-100 m) – and short distance (0-30 m) sensors 

(Fleming, 2008). Long range distance sensors are normally radars or near-infrared lasers and 

are used in ACC and FCW systems (Fleming, 2008). 

Radars, lasers and lidars have been applied in various contexts, from university campuses to 

other usual routes, and under different weather conditions (Regan et al., 2000; Wijesoma et 

al., 2004). 

Radar’s advantages are the high-quality images of the road scene over long distances (100m) 

and under various weather and light conditions. Ladars operate over moderate distances (80 

m) compared to radars, but cost less, have an easy packaging, and their operating power is 

lower. Limitations of these sensors are the low resolution and slow scanning speeds and their 

tendency to be affected by extreme weather conditions. 

Infrared sensors are grouped together with other already mentioned technologies (e.g. video 

and laser) in (Tewolde, 2012) as devices used in lane departure warning systems.  

Thermal radiation sensors are quoted in (Xiao & Gao, 2010) as possible sensors to be 

integrated in active cruise control systems. In (Fleming, 2008) they are mentioned for 

pedestrian detection. Indeed, they detect nonvisible long-IR wavelengths emitted by warm 

body objects at great distances (Fleming, 2008).  

Two kinds of steering wheel sensors exist: absolute and relative, which differ in the way they 

measure the steering angle. Absolute sensors estimate it, while the relative sensors “learn” the 

position of the steering wheel (Tseng, Ashrafi, Madau, Brown, & Recker, 1999). In (Fleming, 

2008), a dual magnet steering wheel angle sensor is quoted and applications for vehicle 

stability control, parking assist and road navigation are mentioned. In (Wijesoma et al., 2004) 

wheel sensors are used to obtain vehicle speed and, in combination to a laser device and a 

fiber-optic gyroscope, able to provide yaw angle measurements, they form a system to detect 

road boundaries. 

Brake/gas pedal sensors are used to achieve pedal position and brake cylinder pressure to 

understand how hard the pedal was pressed. In (Feng et al., 2017) they are integrated with 

transmission output speed sensors, which are sensors linked to CAN bus, to derive the jerk. 

Also, in (Lin et al., 2014) speed sensors are used and linked to GPS device and 

accelerometers. 

Yaw rate sensors are devices belonging to curve sensors (Xiao & Gao, 2010). They assist 

the driver in recognizing the highway course and are especially useful along curves. 

A digital tachograph is a device which imports driving records from the OBD system and is 

compulsory on commercial vehicles driving in some countries, e.g. Korea (Lee & Jang, 2017). 

In Lee & Jang (2017) the authors use this tool to obtain speed, acceleration and yaw rate of 

taxis driving in metropolitan cities. 

In (Espinosa et al., 2011) a potentiometer is used to control the movement of the pedals 

(throttle, brake, clutch) in order to have insights in driver behaviour. This sensor is integrated 
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in a system of several devices used to monitor the triad vehicle-driver-environment with the 

aim of linking it to vehicular emissions. 

Inertial sensors are units made up of gyroscopes and accelerometers, which are commonly 

linked to other tools in a sensing network. In (Espinosa et al., 2011) they are used together 

with OBD, potentiometers, cameras and GPS to obtain data about vehicle-driver behaviour 

and environment influencing emissions. 

In Table 15, pros and cons of the six most applied technologies are recalled. 

 

Table 15 Advantages and Disadvantages of the most applied technologies 

Technology, sensors Advantages Disadvantages 

Cameras 

High information content, low cost 

and operation power, absence of a 

sweep time, passive non-invasive 

sensor 

Shadows, complex driving 

environments, missing lane markings, 

low signal-to-noise ratio of images under 

poor lightening, visibility, bad weather 

making feature extraction challenging, 

loss of information in case of 

overexposure, need of exact and 

complex calibration 

Smartphones 

Scalable, upgradable and cheap; 

instantaneous driver feedbacks; a 

lot of embedded sensors 

Low quality sensors, not fixed position, 

i.e. relative orientation issues, 

driver/passenger recognition, GNSS 

coverage 

OBD-II 

Compulsory on vehicles; several 

engine and dynamics data; non-

subjected to multipath errors; use 

only of fixed sensors 

Variations of the system according to 

different vehicle types, presence of a 

single OBD-II port in most vehicles, 

higher costs than smartphones, 

compatibility problems with vehicles 

released before 1996. 

Global Positioning System 

(GPS) 
Widely available and applied. 

Need of power; privacy issues; signal 

jamming 

Radar 

High-quality images pf the road 

scene over long distances (100m), 

in snow, haze, dust, rain, not 

susceptible to ambient light 

Difficult to detect small and/or static 

objects, difficulties in closed 

environments (tunnels, etc…), 

interference with other radars, time for 

warnings is rather high. 

Laser, lidar 

Operate over moderate distances 

(80 m), lower cost, easy packaging, 

lower operating power, signal cutter 

and size considerations 

Low resolution, slow scanning speeds, 

not usable under extreme weather 

conditions 

 

6.5 Measurements to define driver behaviour (other) 

In relation to the already described devices, the measurements they provide have also been 

reviewed. The aim of this section is to understand which factors representing driving behaviour 

can be detected and can give useful data to manage safety. Therefore, only measurements 

linked to this kind of behaviour are summarized. The same technologies can also provide other 

data typologies, whose review is out of the scope of this work. 

Generally, around 30 different measurements regarding safety have been reviewed, and can 

be summarized as: speed, trajectory, acceleration, steering angle, yaw rate, headway, lane 

position, speed limits and travel information.  
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As noted in SWOV (2000), the most appropriate measurement methods are vehicle control 

(longitudinal and lateral), time headway, time to collision, speed and lane keeping. 

In the following section, the measurements are classified on the basis of the technologies to 

measure them. 

OBD-II can provide the number of trips, travel time, distance, speed, time in each speed band, 

time spent over the speed limit (Kaye, Lewis, & Freeman, 2018), use of brakes and 

acceleration (Rolim et al., 2014). 

Forward-facing cameras can measure data such as range, relative speed and lane position. 

They can also detect lane markings and road edges, as well as measuring the distance of the 

vehicle from the boundaries (Dagan et al., 2004). Systems like MobilEye, which uses a 

forward-facing camera, also calculate TTC in order to trigger the warnings. 

Smartphones can provide measures as three-dimensional position, planar speed, course and 

timestamps, longitudinal and lateral acceleration and angular velocity (Skog et al., 2014; 

Wahlstrom et al., 2017; Wahlström et al., 2015). 

GPS devices obtain driving speed, speed limits, sideslip angle, attitude, roll, yaw, distance, 

location, data and time (Ellison et al., 2012; Ryu et al., 2002). 

Lidar and radar sensors provide position and distance information (Thuy & León, 2010). 

Steering angle/wheel sensors provide steering wheel angle, speeds and lateral acceleration 

(Hac & Simpson, 2000). Infrared sensors generally measure distance, whereas brake/gas 

pedal sensors provide pedal position and brake cylinder pressure. Potentiometers provide 

information relating to the position of throttle, brake and clutch pedals, while yaw rate sensors 

provide yaw rate measurements. The use of a digital tachograph is possible to obtain speed, 

acceleration and yaw rate and inertial sensors can determine acceleration, velocity, 

displacement, angular rates, and rotation angles. 

In Table 16 the measurements provided by the various sensors are summarised. 

Table 16 Measurements provided by the listed sensors 

TECH-

NOLOGY 

Cam

eras 

Smart

phone

s 

OB

D-

II 

G

P

S 

Ra

da

r 

La

da

r 

Steering 

wheel 

sensors 

Infrared 

sensors 

brake/gas 

pedal 

sensors 

yaw rate 

sensors 

digital 

tachogra

ph 

potenti

ometer 

inertial 

sensor 

Number of 

trips 

  

• • 

         

Travel time 

  

• • 

         

Travel 

distance 

  

• • 

         

Position 

 

• 

 

• • • 

       

Headway • 

   

• • 

       

Speed • • • • 

  

• 

   

• 

 

• 

Speed limit • 

  

• 

         

Time over 

speed limit 

• 

 

• • 

         

Brakes and 

acceleration 

 

• • 

     

• 

 

• • • 

lane 

position 

• 

   

• • 

       

Road 

markings/ed

ges 

• 

   

• • 

       

Angular 

velocity 

 

• 

          

• 
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Sideslip 

angle 

   

• 

         

Roll, yaw 

   

• 

    

• • • 

  

Data & time • • • • 

         

steering 

wheel angle 

      

• 

      

Lateral 

acceleration 

 

• 

    

• 

      

Distance 

from 

obstacles 

•    • •  •      

 

After reviewing the available sensors, it is possible to classify them in relation to the kind of 

movement they can provide data about, i.e. longitudinal or lateral movement, and the metrics 

they belong to, i.e. speed regulation, acceleration/deceleration.  

This classification is briefly summarised in Table 17 and Table 18.  

Table 17 Classification of the sensors on the basis of the initial selected variables and metrics – longitudinal 
movement 

Longitudinal movement 

Speed regulation GPS, radar, cameras, On Board Diagnostics (OBD-II), smartphones, digital 

tachograph, steering wheel sensors 

Acceleration/deceleration OBD-II, smartphones, cameras, steering wheel sensors, brake/gas pedal sensors, 

digital tachograph, potentiometer, GPS 

Longitudinal g-force OBD-II, smartphones 

Headway distance cameras, radar, OBD-II, GPS 

 

Table 18 Classification of the sensors on the basis of the initial selected variables and metrics – lateral movement 

Lateral movement 

Lateral position smartphones, lidar, radar, cameras. 

Lateral g-force OBD-II 

Edge line crossing cameras, GPS 

 

6.6 Technologies available in the consortium and provided 

measurements 

Inside the Consortium developing i-DREAMS project, cardioID and OSeven are the partners 

which provide the sensors to detect driving behaviour. Specifically, CardioID provides 

MobilEye technology while OSeven makes available its smartphone solutions. 

MobilEye solution is a forward-facing camera, which alerts drivers when an imminent rear-end 

collision may happen (FCW), helps to keep a safe following distance (HMW), warns drivers 

about unintentional lane departures (LDW), notifies the driver if a vulnerable road user is in the 

danger zone (PCW), and it provides indications about the detected speed limit signs. 

OSeven solutions are smartphone-based technologies, which can provide trip data such as 

duration and distance of the trip, speeding, mobile use while driving, harsh brakes, 

accelerations and cornerings, driving in risky hours and transportation mode detection. On the 

basis of the obtained data a driving behaviour related scoring model is also developed. 
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6.7 Driver behaviour indicators and thresholds 

The aim of this section is to give a first insight into indicators characterising driver behaviour 

and the thresholds specifying the passage from normal to dangerous situations. 

Longitudinal movement, acceleration, time headway and TTC are the main utilized indicators 

for defining driver behaviour and thresholds. Also, variations of TTC are commonly used, such 

as TET, TIT and TTZ. Finally, PET and MTC have to also be considered. 

According to Eboli et al. (2016), acceleration values close to ±6 m/s2 are safe for speed near 

to zero. On the other hand, at speed close to 100 km/h, threshold values are about ±2 m/s2. In 

(Stipancic et al., 2018), acceleration thresholds of ± 2 m/s2 and buffers of 200m for 

intersections were chosen to develop GPS-based safety indicators. 

Vlahogianni & Barmpounakis (2017) using an OBD-II device, proposed the following values for 

thresholds: harsh braking 0.21 g, harsh acceleration 0.18 g and harsh cornering (left/right) 

±0.18 g. (Skog et al., 2014) uses a detection threshold for harsh braking of -2 m/s². In (Rolim 

et al., 2014) the following ranges and descriptions are proposed (Table 19). 

Table 19 events and thresholds as proposed in (Rolim et al., 2014). 

Events Description 

Hard brake 
0.34G<Brake 
force<0.51G 

Extreme brake Brake force>0.51G 

Hard acceleration 
0.31G<Acceleration 

Force<0.45G 

Extreme acceleration 
Acceleration 
Force>0.45G 

 

Moreover, deceleration rate to avoid crash (DRAC) is recognized as a safety performance 

indicator, as it considers the role of differential speeds and decelerations in risk avoidance. 

DRAC is the differential speed between a following vehicle and corresponding lead vehicle 

divided by their closing time. A threshold of 3.4 m/s2 is considered as a cut-off value (Shi et al., 

2018). 

Another widely used indicator is Time Headway (H), which is the elapsed time between the 

front of the lead vehicle passing a point on the roadway and the front of the following vehicle 

passing the same point (Mahmud et al., 2017). In the US, it has been found that it is impossible 

to follow a vehicle safely with headway of <2 s. In Germany, the recommended minimum 

distance is “half the speedometer”, which means, a car travelling at 80 km/h should keep a 

distance of at least 40 m. This rule translates to recommended time headway of 1.8 s. The 

values between 1.0–1.5 seconds are the most often cited in literature. Yannis et al. (2004) 

found through a driving simulator experiment that the average distance headway on rural road 

sections and on two-lane motorway segments is 51 m without the use of any ACC, and time 

headway stands in the range 1.4-2.8 s. In (Michael, Leeming, & Dwyer, 2000) a study to infer 

the average values of headways in urban areas has been developed. Starting from the 

consideration that the 2 s rule pointed out by various driver training programs is normal too 

large, and that headways of 4s indicates isolated vehicles, the authors measured by video 

footage the headway between following cars in three situations: normal driving situation, 

without any intervention, and two situations where the participants were shown different signs. 

They found that in normal driving on urban roads, average headway values are set in the range 

1,4 – 2,2 s. In (Ayres, Li, Schleuning, & Young, 2001) speed and time headway data are 
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collected by means of loop detectors in both free flow and rush hour conditions. During free-

flow situations a variable time-headway with a lower bound set at 1s was noticed, while during 

rush hours the values of the time-headway set in the range 1-2 s and that this range keeps 

constant with vehicle speeds from 20 to 60 mph (32 – 97 km/h). However, many road 

administrations in European countries recommend a safe headway of 2 s. (MobilEye, n.d.-b) 

and (MobilEye, n.d.-a) report the thresholds kept by MobilEye technology. Specifically, the 

headway monitoring system, which works at speeds higher than 30 km/h, gives notice when 

the time distance from the front vehicle equals 2.5 s, and returns a warning when it is 0.6 s. 

The forward collision system provides an alert up to 2.7 s before a possible collision with the 

front vehicle, while the lane departure system is active above 65 km/h. For the Speed Limit 

Indicator Option, the user can manually change the thresholds of the alerts, letting the notice 

be issued when the speed exceeds the speed limit respectively by 5,10,15, 20, 25 or 30 km/h. 

Temporal and spatial proximity can be used to evaluate high-risk driving behaviours, such as 

excessive speeding, driving too close to the preceding vehicle etc. Set of commonly used 

indicators in studies are referred as proximal indicators. These indicators define closeness of 

other vehicles or road users in relation to possible point of collision. The main advantage of 

proximal indicators is that they occur frequently.  

Among time-based indicators, Time to Collision (TTC) calculates the time remaining before the 

collision, if the involved road users continue with their respective speeds and trajectories 

(Mahmud et al., 2017). TTC is a continuous variable that can only be calculated while the road 

users remain on the collision course. TTCs higher than 5 seconds are not very feasible for 

traffic safety research, whereas 1.5 seconds may be suitable as a cut-off value beyond which 

driving becomes unsafe (Niezgoda et al., 2012). Yannis et al. (2004) sum up the thresholds 

reported by SIMONE and SISTM, underlining that values < 3s are considered in SIMONE as 

uncomfortable situations, and TTC < 1.5 s as dangerous situations, while the micro-simulation 

package SISTM reports all TTC < 10s and TTC > 1s. Also (Laureshyn, Goede, Saunier, & 

Fyhri, 2017) cites thresholds for TTC, indicating dangerous situations to be the ones when 

TTC values are < 1.5 s. In (Graham & Hirst, 1994) a TTC value of 3 s has been suggested as 

suitable values, warning about a TC=4-5 s, which seems to provide too many alarms if applied 

to Collision Warning Systems. In (Hogema & Janssen, 1996), a minimum TTC value of 3.5s 

has been reported for non-supported drivers and 2.6 s for supported ones. This last value is 

also the one regarded as a safety concern. Finally, (Van der Horst & Hogema, 1994) confirms 

a TTC of 2.5 s and a minimum TTC value of 1.1 s. In (Lamble, Laakso, & Summala, 1999) a 

study about the influence of phone dialling and cognitive tasks in comparison to normal driving 

is developed. As measures to evaluate the different performances TTC and Brake Reaction 

Time (BRT) have been considered. In addition to the differences among control task and 

phone/cognitive tasks, he authors found that TTC stands in the range [11;11.5]s, when drivers 

are not distracted, while BRT belongs to the range [3.5;4]s. These performances increase in 

both distraction tasks, i.e. a growth of 0.62 s and 0.95 s happens in TTC for dialling and 

cognitive tasks respectively, and an increase equal to 0.48 s and 0.50 s has been measured 

for BRT. Based on TTC, Time Exposed TTC (TET) and Time Integrated TTC (TIT) are further 

used to measure risk duration and risk integration, respectively. TET expresses the total time 

of a vehicle exposed in risk situations (the length of time a TTC-event remains below a 

designated TTC-threshold). TIT is the integral part of the TTC-profile during the time below the 

threshold (Mahmud et al., 2017). 

Another variation of TTC measure is Time-to-Zebra (TTZ), which aims to estimate traffic safety 

at pedestrian's crossings and analyse if drivers regard pedestrians not on the crossing as a 

potential danger risk. TTZ value is defined as the distance to the zebra crossing divided by the 

speed. It can be calculated as the time left for the car to the zebra crossing at the moment the 

pedestrian arrives at the curb (Niezgoda et al., 2012). In particular, for TTZ ≤ 3 s, the driver is 
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approaching the pedestrian crossing with high speed values and adopts the most abrupt speed 

reductions. This behaviour highlights a certain driver's aggressiveness. For TTZ values 

belonging to the range (3;5 s), the driver adopts lower speed and less abrupt speed reductions 

than those shown for TTZ≤ 3 s (Bella & Silvestri, 2015). 

Time-to-Accident (TA) is a special value of the TTC, based on evasive action undertaken by 

any of the road user to avoid collision. TA is the time that remains to an accident from the 

moment that one of the road users starts an evasive action, if they had continued with 

unchanged speed and directions. A TA value of 1.5 s is used to distinguish serious conflict and 

slight conflict (Niezgoda et al., 2012). 

Another commonly used value is Post-Encroachment-Time (PET). It is a calculation of the time 

difference between the passages of two road users with a common area of potential collision 

(common spatial point) that is below a given cut-off value (Niezgoda et al., 2012). PET is 

calculated as the time between the moment when the first road user leaves the path of the 

second and the moment when the second reaches the path of the first (i.e. the PET indicates 

the extent to which they miss each other). Typically, it is assumed that the threshold values 

1.0 s or 1.5 s are considered critical (Mahmud et al., 2017). 

Margin to Collision (MTC) is a distance based proximal indicator that represents the possibility 

of collision in a case where the preceding vehicle and the following vehicle decelerate abruptly 

at the same time (the abrupt deceleration is assumed to be 0.7 g). MTC is the ratio of the 

summation of the inter-vehicular distance and the stopping distance of the preceding vehicle 

divided by the stopping distance of the following vehicle. MTC of <1 indicates a high likelihood 

of collision in a case where the preceding vehicle decelerates abruptly, even if the following 

vehicle at the same time also decelerates abruptly (Mahmud et al., 2017). 

Among traffic safety proximal indicators, there are several indicators concerning lateral 

behaviour of a driver. Lateral behaviour, also called lane keeping, describes driving 

performance, but it is very difficult to indicate where limits between safet and unsafe behaviours 

are. Two of the most common lane keeping indicators are: standard deviation of lane position 

(SDLP) and Time-To-Line-Crossing (TLC). SDLP reflects the degree of vehicular control a 

driver exerts in any particular driving situation (Martens et al., 2011). TLC is defined as the 

time it takes to reach the lane marking, assuming fixed steering angle and a constant speed. 

It is accepted, that TLC < 1s implies an increased safety risk. TLC indicates that a lane exceed 

is likely to occur within a short time frame and therefore detects a possible risk before the lane 

exceed actually occurs (Niezgoda et al., 2012). 

Table 20 summarizes the basic driver behaviour indicators and thresholds. 
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Table 20 : Literature synthesis for driver behaviour indicators and thresholds 

Type of 
indicator 

Study Indicators Thresholds 
Suggested 
STZ phase 

Acceleration 
/deceleration 
/cornering 
indicators  

Vlahogianni & Harsh Brakings 2.1 m/s2  

Barmpounakis 
(2017) 

Harsh Accelerations 1.8 m/s2 
Avoidable 
crash 

 Harsh Cornerings 1.8 m/s2  

Eboli et al. (2016) 
Acceleration at speed 
100km/h 

± 2 m/s2 
Normal/dang
erous driving 

 
Acceleration at speed near 
zero 

± 6 m/s2 
Normal 
driving 

Stipancic et al. 
(2018) 

Acceleration ± 2 m/s2 
Dangerous 
driving 

Shi et al. (2018) 
Deceleration Rate to Avoid the 
Crash (DRAC) 

3.4 m/s2 
Dangerous 
driving/avoid
able crash 

Time based 
indicators 

Niezgoda et al. 
(2012) 

Time to Collision (TTC) 1.5 s 
 

 Time to Accident (TA) 1.5 s 
Avoidable 
crash 

 Time-To-Line-Crossing (TLC) <1 s   

Mahmud et al. 
(2017) 

Time Headway (H) <2 s 
Normal 
driving 

 
Post-Encroachment-Time 
(PET) 

1.0-1.5 s 
Avoidable 
crash 

Bella & Silvestri 
(2015) 

Time-to-Zebra (TTZ) 1-4 s 
Normal/dang
erous driving 

Distance 
based 
indicators 

Mahmud et al. 
(2017) 

Margin to Collision (MTC) <1 
Avoidable 
crash 

Lateral 
behaviour 
indicators 

Martens et al. (2011) 
Standard deviation of lateral 
position (SDLP) 

>0.25 cm 
 

 

Finally, some studies are reported, which tried to give an insight into the behavioural pattern 

of normal driving. 

In (André, 2004) driving conditions, represented by running and average speed (km/h) and 

average positive acceleration (m/s2), are obtained by analysing and clustering a set of data 

from France, UK, Germany and Greece. Congested urban conditions, free-flow urban 

situations, secondary roads, main roads and motorways have been considered. Table 21 

shows the maximum values reported by the authors for each category. 

Table 21 Classes of driving conditions as introduced in (André, 2004). 

Classes of 
driving 
conditions 

Running 
speed 
(km/h) 

Average 
speed 
(km/h) 

Average 
positive 
acceleration 
(m/s2) 

Congested 
urban 

25.9 15.9 0.87 

Free-flow urban 35.6 32.3 0.81 
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Secondary 
roads 

65.0 64.0 0.75 

Main roads 86.1 85.7 0.67 

Motorways 123.8 123.7 0.53 

 

Research relating to driving cycles provide information about driving patterns in normal 

conditions. 

In (Amirjamshidi & Roorda, 2015) driving cycles for commercial vehicles in the Toronto area, 

including arterial, collector, local roads and two freeways, are worked out. The parameters 

considered for the assessment of the cycles are average speed, average running speed, 

average acceleration and deceleration, time proportion of driving modes in idling, accelerating, 

decelerating, cruising and creeping, average micro-trip duration, average percentage of 

acceleration-deceleration changes, root mean square acceleration, root mean square of 

positive kinetic energy overweight. In Table 22 running speed, average velocity and 

acceleration/deceleration are summarized. 

Table 22 Assessment measures for driving cycles developed in different locations. 

Assess
ment 
measure 

Simul
ated 
Toront
o LDT 
drivin
g 
cycle 

Beijin
g 

Shang
hai 

Chong
qing Tianjin 

Cheng
du 

Hong 
Kong1 
drivin
g 
cycle 

US 
HWFE
T 

Artemi
s 
freewa
y 

WLTC 
Class 
2 high 
phase 

WLTC 
Class 
3 extra 
high 
phase
s 

V (km/h) 52.7 25 38 36 29 50 38.3 77.1 97.0 54.1 71.4 

Vr (km/h) 54.0 27 41 37 35 51 41.8 77.7 98.3 57.8 74.9 

Acc 
(m/s2) 

0.293 0.43 0.48 0.44 0.34 0.39 0.398 0.288 0.408 0.238 0.372 

Dec 
(m/s2) 

-0.544 -0.42 -0.51 -0.48 -0.45 -0.43 -0.414 -0.383 -0.496 -0.323 -0.381 

 

The authors of (Ho, Wong, & Chang, 2014) develop driving cycles for passenger cars driving 

in Singapore and compared them to the New European Driving Cycle (NEDC). The measures 

they used to compare the cycles are maximum and average speed, and the percentage of 

driving modes – idling, acceleration, deceleration and cruising (Table 23). 

Table 23 Maximum and average speed as reported by (Ho, Wong, & Chang, 2014). 

Driving cycle Maximum speed [km/h] Average speed [km/h] 

SDC – expressway 88.0 49.7 

SDC – arterial road 77.0 33.7 

NEDC – expressway 120.0 69.4 

NEDC – arterial road 50.0 27.2 

 

In (Li, Xiong, Wang, & Lu, 2015) 3 scenarios determined by TTC values on three different road 

typologies (urban access roads, urban distributor roads and freeways) in Bejing were studied: 

a) stable car following; b) unstable car following and c) car-approaching. Speed, distance 

headway (DHW), time headway (THW), the inverse of TTC (TTCi), DHW (accelerator release 

and brake activation) and TTC (accelerator release and brake activation) are considered for 

the evaluation (Table 24). 
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Table 24 Control parameters and results found by (Li, Xiong, Wang, & Lu, 2015). 

Control 
parameter 

Speed 
[km/h] 

DHW 
[m] 

DHW 
accelerator 
release [m] 

DHW 
brake 

activation 
[m] 

THW 
[s] 

TTCi 
[s^-1] 

TTC 
accelerator 
release [s] 

TTC 
brake 

activation 
[s] 

A – urban 
access 
roads 

47.14+-
3.82 

24.08+-
4.48 

- - 
1.83+-
0.32 

0.012+-
0.030 

- - 

B – urban 
access 
roads 

45.68+-
3.95 

22.60+-
3.92 

- - 
1.78+-
0.29 

0.039+-
0.011 

- - 

C – urban 
access 
roads 

- - 25.29+-3.93 
22.24+-

3.78 
- - 19.05+-3.15 

14.20+-
3.80 

A – urban 
distributor 

68.98+-
4.30 

33.46+-
6.50 

- - 
1.72+-
0.27 

0.024+-
0.035 

- - 

B – urban 
distributor 

68.18+-
6.20 

31.67+-
6.17 

- - 
1.64+-
0.24 

0.085+-
0.012 

- - 

C – urban 
distributor 

- - 33.50+-6.80 
27.37+-

8.02 
- - 21.96+-3.46 

14.68+-
3.35 

A – 
freeways 

94.65+-
8.25 

47.86+-
9.75 

- - 
1.80+-
0.36 

0.025+-
0.033 

- - 

B – 
freeways 

91.49+-
13.16 

45.19+-
9.41 

- - 
1.77+-
0.32 

0.093+-
0.087 

- - 

C - 
freeways 

- - 44.60+-7.65 
34.16+-

9.16 
- - 20.04+-2.59 

14.64+-
5.71 

 

6.8 Conclusions 

In total 15 tools have been found to be used in literature. From the most frequently used to the 

least frequently used there are: cameras, smartphones, OBD-II, GPS, radar, lidar, laser, 

steering angle sensors, distance sensors, brake and gas pedal sensors, speed sensors, yaw 

rate sensors, thermal radiation sensors, infrared sensors, digital tachograph, potentiometer, 

inertial sensors. 

More than 30 different direct measurements have been reviewed. Of these, the 14 most 

reported are: speed, trajectory, acceleration, latitude and longitude, jerk, acceleration/brake 

pedal status, steering angle, yaw rate, time/distance headway, lane position, speed limits, time 

over speed limit and travel information. 

As indirectly calculated parameters, Time-To-Collision, its inverse and Tres have been also 

cited. 

Considering both the reviewed technologies and the ones owned by the consortium, it can be 

concluded that all the available and most promising measurements are covered by the 

technologies provided by CardioID and Oseven, providing a reliable insight in driving behaviour 

characteristics. 
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7 Conclusion and considerations for the next steps  

The aim of the work documented in this report was to review and assess state-of-the-art 

approaches and methods to monitor the driver’s mental state and contextual factors of the 

driving environment that impact task demand. In addition, a selection of driver trait factors 

including measurement methods were summarized and driver behaviour indicators were 

reviewed.  

The vast majority of reviewed literature and information concerns car driving. An assessment 

was conducted to see what extent the conclusions are transferable to other modes. Apart from 

the driving behaviour indicators and corresponding threshold ranges, no indication was found 

that contradict the assumption that the identified methods and indicators can be transferred 

from the context car to the other i-DREAMS modes: trucks, buses, trains and trams. However, 

the particular situation of professional driving should be borne in mind at all times. 

One of the main conclusions that can be drawn is that two physiological/behavioural 

measurement methods should be used for the continuous driver monitoring. This insight 

applies to measuring all of the single constructs: task demand attention and distraction, fatigue 

and sleepiness as well as emotions and other related constructs. By using two measures, the 

drawbacks of a single measurement methods can be compensated for.  

The benefit of using CardioWheel is that a real-time measure of ECG can be obtained, with 

equipment available in the consortium. However, heart rate and heart rate variability is 

sensitive to inter-individual differences and confounding factors. An additional dashboard 

mounted eye tracking system is beneficial for measuring task demand, sleepiness and fatigue. 

A thermal or standard camera for facial feature tracking would support emotions monitoring as 

well as sleepiness and distraction detection. Another consideration is using a wrist band with 

EDA sensors, which also supports emotion detection. However, the impact on the naturalistic 

driving character has to be considered when asking the participants to wear a device whenever 

they drive. When using cameras facing the participant, GDPR is to be considered carefully.  

Due to the circumstance that each measuring method described is not the one and only 

standard in research, a thorough testing in the simulator stage is indispensable. 

Considerations for the single constructs are summarized hereafter. 

 

Task demand 

Self-reported task demand, driving performance measures and physiological measures are 

three main approaches to measuring task demand. The most frequently used method in 

reviewed literature is the use of physiological and behavioural indicators, where the number 

and duration of eye fixations as well as ECG measures are indicated to be the most reliable 

ones. Although ECG can be captured by the consortium’s cardio wheel (sensors on the 

steering wheel), a supplementary eye tracking system might prove beneficial. With regard to 

driving performance, lateral position deviation and reduced speed are important indicators of 

increased task demand. Both can be detected by means of mobile phones. However, 

physiological and behavioural measures36 are to be prioritized over driving performance 

measures to measure task demand.  

 

                                                
36 Physiological measures refer to the activity of the autonomous nervous system, for example the 
heartbeat. This activity cannot (or hardly) be controlled by an individual whereas behavioural measures 
refer to the movement of body parts that can actively be controlled, such as the eyes and facial 
expression (which, however, are not always controlled consciously). 
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Attention and distraction 

The best-studied forms of distraction are visual but also cognitive distraction. Eye tracking 

systems and cameras are most frequently used to measure attention and distraction, with 

head position, viewing and scanning patterns and PERCLOS (percentage of time that eyelid 

covers ≥80% of the pupil) being the most reliable indicators. Driver behaviour indicators are 

focused on lateral and longitudinal control measurements. With regards to the i-DREAMS 

system, a dashboard eye tracking system or camera might prove beneficial for measuring 

attention and distraction in real-time. To measure distraction due to mobile phone use, 

smartphone sensors which detect the movement of the phone can also be beneficial and are 

non-intrusive. 

 

Fatigue and sleepiness 

The literature on measuring fatigue and sleepiness indicates that eye tracking is the most 

commonly used measure of sleepiness with blink rate and PERCLOS shown to be the most 

robust indicators in terms of ocular measures. Heart rate and heart rate variability also shows 

potential and can be developed as a minimally invasive technique. Utilising multiple measures 

and indicators could help to improve the reliability of sleepiness detection.  

 

Emotions and stress 

Research designs of reviewed studies on measuring emotions and related constructs are very 

heterogeneous with a broad variety of underlying theoretical assumptions regarding the 

operationalization of ‘emotions’, due to a lack of a standard definition. However, anger, 

frustration, aggression, stress as well as fear and anxiety appeared to be the most studied 

emotional categories, composed of combined arousal and valence levels. EDA and heart-

based measures are most frequently used to measure emotions. A combination of two 

physiological measures is advised. Complementing the ECG measure of the Cardio Wheel 

with a wrist worn EDA sensor or a (thermal) camera for facial feature tracking might prove 

beneficial.  

 

Substance impairment 

Conventional methods to detect substance impairment – blood tests, saliva tests, urine 

samples and breathalysers – are reliable, especially to infer impairment due to alcohol, but not 

applicable for i-DREAMS since they do not allow for continuous monitoring. Wearable sensor 

technologies using touch-based, breath-based and ocular measures are still under 

development or have not been validated, respectively. Wrist-worn transdermal alcohol sensors 

have more potential to be used within i-DREAMS. Impairment by drugs and medicine is much 

less understood than alcohol impairment and thus, there is no common understanding of real-

time measurement. Regardless of the measurement methods and their quality, practical 

considerations for implementations in i-DREAMS should be noted. Although impairment may 

be measurable in real-time with increasing reliability, the effects of the specific impairment may 

be expressed in impaired attention and alertness and thus, already accounted for by the 

corresponding real-time measurements. This should be borne in mind for the model of the 

safety tolerance zone. 

 

Driver characteristics 

Collecting further information about the i-DREAMS participants serves various goals in the 

project: populating the i-DREAMS research data base, customizing interventions, accounting 

for covariates and possibly introducing stable factors into the Safety Tolerance Zone model as 
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correction factors. The driver characteristic variables will be subject to a one-time 

measurement, likely before starting the trials. The most efficient methods to collect this data is 

surveying. However, it is recommended to contemplate using a few additional performance 

tests such as measuring attentional regulation capabilities. Table 12 provides an overview of 

variables suggested to account for.  

 

Driver behaviour indicators 

The most commonly used systems to measure driver behaviour are cameras, smartphones, 

OBD-II, GPS, radar, lidar, laser, steering angle sensors, distance sensors, brake and gas pedal 

sensors, speed sensors and yaw rate sensors with the indicators speed, trajectory, 

acceleration, latitude and longitude, jerk, acceleration/brake pedal status, steering angle, yaw 

rate, time/distance headway, lane position and time over speed limit and travel information. An 

important indirect parameter is Time-To-Collision and its inverse. It can be concluded that the 

most promising measurements are covered by the equipment already available to the 

consortium. 

 

7.1 Recommendations for measurement 

Revisiting the starting position and the initial project outline, some modifications had to be 

made to arrive with a set of relevant factors measurable in real time or one-off. Figure 6 

provides the adapted version of the operator related measures which ideally should be 

considered in a conceptual model of the safety tolerance zone.  

 
Figure 6: Adapted figure of factors ideally to be considered in the STZ after review of scientific literature.  

 

In general, the most important conclusions and recommendations for i-DREAMS include: 
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 Most of the evidence is available for car drivers. The transferability of some of the 

findings to trucks, busses, trams and trains may partly be determined in an iterative 

process and by actual trial and error 

 ‘Mental state’, ‘emotions’, ‘distraction’ etc. are theoretical constructs that ask for 

deciding on one of the plethora of definitions and theoretical concepts.  

 Using at least two approaches for driver state monitoring will be beneficial for 

assuring validity and reliability 

 Majority of driver mental state variables could be measured with cameras, eye 

tracking, and heart rate sensors either embedded in the steering wheel or 

incorporated into It should be considered that the use of devices that have to be put 

on or activated by the participant before driving may compromise the naturalistic 

driving character of the trials.  

 The potential to consider the drivers’ traits and characteristics in the calculation of the 

safety tolerance zone should be explored.   

 Thoroughly testing indicators and measures at the simulator stage is indispensable 

 

The table below summarises the operator states, and the recommended measures, technology 

and thresholds for use when monitoring driver task complexity and coping capacity, based on 

the systematic review of scientific literature. 

 

Table 25: Summary of factors to be considered for modelling the driver state and corresponding indicators  

Operator 
state 

Optimal 
measure 

Ideal 
technology 

Influence on 
coping 
capacity/ 
task demand 

Safety 
critical 
threshold  

Frequency of 
measure 
(real time or 
one-off) 

Attention and 
distraction 

- PERCLOS 

- PERLOOK  

- Glance 
duration 

- Head 
movement 

- driver 
behaviour 
(lateral and 
longitudinal 
measures, 
reaction time, 
gap acceptance) 

- Eye tracker 
(glasses / 
system) 

- Driver facing 
camera 

- Forward facing 
camera and 
collision 
avoidance 
system 
(Mobileye) 

Increased 
PERCLOS, 
PERLOOK, 
glance duration, 
head 
movements = 
increased 
distraction and 
reduced coping 
capacity. 

- PERCLOS and 
PERLOOK > 
35% 

- Glace duration 
of 2 seconds 

- Head turns > 5 
seconds 

 

Real time  

Alertness 

(fatigue / 
sleepiness) 

- Blink rate 

- PERCLOS  

- Heart rate 
variability (HRV) 

 

- Eye tracker 
(glasses / 
system) 

- Driver facing 
camera 

- Heart rate 
sensors 
embedded in 
steering wheel 
(CardioWheel) 

- Wearable heart 
rate monitor 

Slowed blink 
rate, increased 
PERCLOS = 
increased 
sleepiness and 
reduced coping 
capacity. HRV 
data mixed 
findings 

 

Various 
thresholds 
reported 

Real time  

Emotion, stress - ECG (heart 
rate) 

- EDA 

- ECG sensors 
(CardioWheel) 

- EDA wearable 
device 

Increased heart 
rate and EDA = 
increased 
emotional 
response and 

Unsure Real time  
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- Driver facing 
camera 

- Eye tracker 
(glasses / 
system) 

reduced coping 
capacity 

Substance 
impairment 

- Blood and 
Urine samples 

- Tissue 
readings 

-Breathalysers 

- EDA  

- Wearable 
sensors 
(TruTouch) 

Increased 
reading of 
impairment = 
reduced coping 
capacity  

Unsure Real time and 
one-off 

Driving 
behaviour  

- Speed  

- Braking 

- Lateral and 
longitudinal 
movement 

- Trajectory  

- Acceleration 

- Time to 
collision 

- Forward facing 
camera and 
collision 
avoidance 
system 
(Mobileye) 

- Smart phones 

- Various driving 
sensors 

Increased 
variables = 
reduced coping 
capacity 

Various 
thresholds 
reported 

Real time, post 
trip 
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Annex A: Study review on external context on task demand 

Table 26: Effects of external context on task demand 

Year Author PubType 
Specific 
Type Context Focus parts Indicators Methods 

Measurement 
tools Equipment 

Transferability 
to other modes 

2018 Foy & 
Chapman 

Analysis   road type 
4 road types 
(arterial A-
roads, city-
centre multi-
lane routes, 
suburban 
roads, dual 
carriageway) 

  Change in 
concentration of 
oxygenated (HbO) 
and deoxygenated 
(HbR) haemoglobin 
mean skin 
conductance 
number of skin 
conductance 
responses per 
minute, Heart rate 
(bpm) 
respiration rate 
(breaths per 
minute), NASA-
TLX workload 
scores (1-20), Eye 
movement 
measures of mean 
fixation duration 
(ms) horizontal and 
vertical spread of 
search (degrees) 
mean speed (mph) 
SD of lane position 
(m) 
acceleration 
signatures in each 
of four directions 
(m/s/s) 

    NITES 2 
driving 
simulator 
fNIRS device 
FaceLAB 5.0 
remote eye 
tracker 
BIOPAC 
equipment 
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Year Author PubType 
Specific 
Type Context Focus parts Indicators Methods 

Measurement 
tools Equipment 

Transferability 
to other modes 

2017 Bongiorno 
et al. 

Analysis workload, 
road context, 
traffic flows, 
weather 

two-lane rural 
road with 
different 
traffic flows, 
road 
geometry, 
traffic flows, 
visibility, 
vehicle 
ergonomics 

visual behaviour, 
driver characteristics, 
fixation time 

eye movements, 
Galvanic Skin 
Resistance, steer 
rotation, head 
movements, ECG, 
EEG, GSR (max, 
min, ΔGSR (max-
min)), Δt (time gap 
between the max 
and min GSR), m 
(angular 
coefficient), latency 

  GPS, GSR 
sensor, OBD 
port  

  similar study in a 
simulated 
environment, 
verify how proper 
corrections to the 
road context or 
the traffic flows 
can improve the 
driver’s MWL 

2015 Auflick Analysis driver 
workload 
driver 
distraction 

highway gender differences 
age differences 
task type differences 
task duration, speed, 
range, range rate, 
time headway, time 
to contact 

lane keeping 
longitudinal control 
eye glance 
behaviour 
object-and-event 
detection 
data was captured 
for mean, median, 
standard deviation, 
minimum and 
maximum 
distances, and time 
durations (at the 
minimum or 
maximum) 

Exploratory factor 
analysis (EFA) 
techniques 
Maximum 
Likelihood Factor 
Analysis (MLFA) 
Multivariate 
Analysis of 
Variance 
(MANOVA) 
Real driving 
experience 

Driver 
Workload 
Metrics (DWM) 

sensors 
cameras 
on-board 
instrumentati
on recorded 

Confirmatory 
Factor Analysis 
(CFA) 

2015 Marquart et 
al. 

Review eye 
measurement 
parameters 
and drivers’ 
mental 
workload 

road/environ
mental 
variables 
(e.g. 
illumination, 
temperature) 

eye tracking 
eye activity (blinks, 
fixations, and 
saccades) 
pupillometry 

variability of the 
inter-beat-interval 
Blink rate 
Blink duration 
gaze distributions 

electrooculograp
hy (EOG) 
measurement 
method 
index of cognitive 
activity (ICA) 
questionnaires 
instantaneous 
self-assessment 
(ISA) 
experiment 
driving simulator 

NASA Task 
Load Index 
(NASA-TLX) 
Rating Scale 
Mental Effort 
(RSME) 
in-vehicle 
information 
systems (IVIS) 
PERCLOS 
measure of 
fatigue  
mean pupil 
diameter 
change rate 
(MPDCR) 

head-
mounted eye 
tracker 
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Year Author PubType 
Specific 
Type Context Focus parts Indicators Methods 

Measurement 
tools Equipment 

Transferability 
to other modes 

2015 Stojmenova 
& Sodnik 

Analysis mental or 
cognitive 
workload 

  blink duration  
blink frequency 

eye blinks 
eyes movements 
(electrooculogram, 
EOG) 
heart rate 
Pupil diameter 
electroencephalogr
am (EEG) 
magnetoencephalo
graphy (MEG) 
galvanic skin 
responses (GSR) 

driving simulator 
Detection 
response task 
(DRT) 
Peripheral 
detection task 
(PDT) 

electrocardiogr
am (EKG) 

in-vehicle 
devices and 
systems 
global 
positioning 
systems 
(GPS) 
interactive 
displays 
DRT device 

estimate the level 
of cognitive 
workload of 
drivers and 
sustain it in the 
predefined and 
safe range 

2014 Stuiver et 
al. 

Analysis low/high 
traffic density, 
weather 
(fog/no fog),  

motorway 
with three 
lanes in both 
directions 

mental workload, 
lane change, short-
term response 
patterns 

heart rate 
variability, blood 
pressure, 
cardiovascular 
reactivity, heart 
rate, systolic blood 
pressure variability  

ST Software 
driving simulator, 
short-term 
analysis 
demographic 
questionnaire 
electrocardiogra
m (ECG) 
General Linear 
Model Repeated 
Measures tests 
(SPSS) 
MANOVA 

traffic 
generating 
protocol (lane 
scenarios and 
driver 
behaviour), 
navigation 
system 
FIN.A.PRES 
device 
(Finometer) 

three 32-inch 
diagonal HD 
plasma 
screens, 
three Ag–
AgCl 
electrodes 
CARSPAN 

  

4  Schwarze 
et al. 

Analysis workload of 
different age 
groups 

real, right-
hand traffic 

two left-turn lanes at 
an intersection 
turning right when 
pedestrians, cyclists 
and cars were 
signaled ‘‘go’’ 
simultaneously 
driving through a 
complex intersection   
turning left without 
traffic signs 

subjectively 
perceived effort 
psychophysiologica
l measures 
age 
inter-beat-interval 
between two heart 
beats (IBI) 
variability of the 
inter-beat-interval 
(RMSSD) 

questionnaires  
test drive 
t-statistic 

electrocardiogr
am 

ViewCar 
(Audi A6) 

 
study in a driving 
simulator 
examine whether 
the results can be 
found for other 
sequences of 
situations 
differing time 
intervals between 
two situations 
involve gender 
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Year Author PubType 
Specific 
Type Context Focus parts Indicators Methods 

Measurement 
tools Equipment 

Transferability 
to other modes 

2011 Benedetto 
et al. 

Analysis driver 
workload 

In-vehicle 
information 
usage (IVIS) 

Eye blink duration Blink rate 
Blink duration 
Average Pupil Size 
(APS) 
Reaction time 
(Lane Change 
Delay) 
IVIS performance 
NASA-Task Load 
Index  
Rating Scale for 
Mental Effort 
(RSME) 

driver simulator 
Lane Change 
Test 

  Oktal 
SCANer II 
driving 
simulator 
SMI iView X 
HED head-
mounted eye 
tracker 
13x17cm 
touchscreen 
display 

  

2008 De Waard 
et al. 

Analysis mental 
workload and 
behaviour 

3 traffic 
scenarios to 
investiagte 
the effects of 
an increase in 
HGV. 1) only 
passenger 
cars 2) mix: 
common mix 
of HGVs and 
private cars 
3)HGV 
column: A 
column of 
HGVs in the 
slower lane 
weather: a) 
clear (bright 
weather), b) 
fog: (visibility 
150m) 

  Average speed, SD 
Speed, Average 
Lateral position, SD 
Lateral position, 
Minimum THW, 
Minimum TTC, 
Location Lane 
Change 
Heart rate (average 
BPM), Heart rate 
variability 
Experienced risk 

driver simulator 
ECG 
questionnaires 

ST Software 
The R-peak in 
the ECG signal 
was detected 
with 1ms 
accuracy. Inter-
beat intervals 
were analysed 
and the power 
spectrum of 
heart rate 
variation in the 
0.10 Hz band 
were calculated 
by the 
programme 
CARSPAN 
Rating Scale 
Mental Effort 
(RSME) 

three frontal 
32inc. LCD 
screens and 
one additional 
screen on the 
left-hand side 
behind the 
participant 
three small 
Ag/AgCl 
electrodes 
attached to 
the chest 

  

2006 Patten et 
al. 

Analysis cognitive 
workload 

driver 
experience 
traffic: route 
complexity 

  PDT reaction times 
(ms) 
PDT miss rates 

peripheral 
detection task 
(PDT) method 
field study 

  Volvo 850S   
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Year Author PubType 
Specific 
Type Context Focus parts Indicators Methods 

Measurement 
tools Equipment 

Transferability 
to other modes 

91 De Waard 
& 
Brookhuis 

Analysis driving 
performance 
impairment 

road type, 
traffic 

  lateral position of 
the car 
steering wheel 
position 
speed 
distance to the cat 
in front 
speed of the car in 
front 
EEG 
ECG 

road experiment 
The activation of 
the subjects as 
measured by the 
relative energy 
parameter [(theta 
+ alpha)/beta] 

DEC LSI 11/23 
computer at 
4Hz 
DEC LSI 11/23 
computer at 
4Hz 
DEC LSI 11/23 
computer at 
4Hz 
DEC LSI 11/23 
computer at 
4Hz 
DEC LSI 11/23 
computer at 
4Hz 
instrumented 
FM tape 
recorder, at 125 
Hz 
inter-beat-
intervals as 
intervals 
between R-tops 
in milliseconds 

Volvo 245 
GLD 
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Annex B: Study review on indirect effects of road layout, traffic, weather, day and time on 

task demand 

Table 27: Effects of exogenous factors on task demand (Negative effect: positive correlation or increase of task difficulties/accident/risk,   

Positive effect: negative correlation or decrease of task difficulties/accident/risk) 

Year Author 
Effect  

(positive/negative/percentage) Context Road Layout Traffic Weather Day & Time  
2016 Da Costa et 

al. 
negative crash risk narrow lanes        

2015 Stoker et al. positive crash risk denser street       

2015 Wood et al. positive crash risk larger lane width 
reductions 

      

    negative crash risk small lane width 
reductions 

      

2014 Russo et al. negative crash risk narrow lanes        

2014 Stephan and 
Newstead  

negative crash risk primary state arterial 
road 

      

2013 Manuel et al.  positive crash risk wider lanes/low traffic 
volumes 

      

    negative crash risk wider lanes/high traffic 
volumes 

      

2013 Rangel et al. negative accidents, injuries, 
fatalities 

higher number of lanes       

2013 Chengye et 
al. 

negative crash risk higher number of lanes       

2012 Ukkusuri et 
al. 

negative crash risk higher number of lanes 
and wider roads 

      

2011 Ahmed et al. positive crash risk higher number of lanes       

2011 Pulugurtha 
and Nujjetty 

negative crash frequency minor right-turn lanes       

2011 Guo et al. negative crash frequency through-traffic per lane 
on minor roads  

      

2010 Bergel et al. negative crash risk main roads, secondary 
roads, motorway, minor 
roads 

      

2009 Chen et al. negative crash frequency  deceleration lane 
lengths 

      

2008 Jones et al. positive injured casualties roads classed as mirror       

2002 Valent et al.  negative risk of fatal and non-
fatal injury  

provincial/state road 
within an urban area 
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Year Author 
Effect  

(positive/negative/percentage) Context Road Layout Traffic Weather Day & Time  
1999 Bared positive crash frequency  acceleration and 

deceleration lane 
lengths 

      

1993 Blower et al. negative injury crash rate major artery road for 
heavy tractor trailers 

      

1991 Zegeer et al. negative superelevation and 
crash 

road width, spirals       

2016 Shi et al. negative crash frequency   congestion, speed 
variation  

    

2012 Zheng negative crash frequency   free flow, transition, 
congestion 

    

2010 Guo et al. positive crash frequency   major through-traffic 
road 

    

2010 Haleem and 
Abdel-Aty 

positive crash severity   annual average daily 
traffic (AADT) on the 
major road  

    

2008 Golob et al. negative severity   congestion     

2016 Focant et al. 71% negative accident risk motorway   frost    

2016 Martensen et 
al. 

negative injuries     precipitation, 
frost/snow days, 
sun, wind 

  

2014 Focant and 
Martensen 

positive injury/fatal crashes     fog and rain   

2013 Elvik et al. negative injury crashes     rain   

2011 Abdel-Aty et 
al. 

negative crash risk     fog   

2011 Sabir negative injury accident     fog   

2008 Brijs et al. negative injury crash     rain intensity, 
duration  

  

     negative accident risk     rainfall   

    positive injury/fatal crash     snow   

2004 Bergel negative injury 
crashes/fatalities 

motorways  
and main roads 

  rainfall height   

1998 Edwards positive severity     rain   

1991 Fridstrøm and 
Ingebrigtsen 

negative fatalities/injury 
crashes 

    rainfall   

2015 Olszewski et 
al.  

negative fatality risk/severity of 
crash 

      dark/no street 
lighting, twilight 

2013 Gaca and 
Kiec 

negative risk of crash  national road      morning        
(05-06h) 

    negative risk of crash  regional road     morning  
(05-06h) 

    negative risk of crash  national road      evening  
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Year Author 
Effect  

(positive/negative/percentage) Context Road Layout Traffic Weather Day & Time  
(17-19h) 

    negative risk of crash  regional road     evening  
(17-19h) 

2013 Wang et al. negative crash frequency       travel time 
delay 

2009 Johansson et 
al. 

30% negative crash risk urban area     darkness 

    0% negative crash risk rural area     darkness 

    40% negative crash risk rural/urban area     darkness 
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Annex C: Study review on measuring attention and distraction 

Table 28: Detailed results of literature review on distraction and inattention 

Year Author 
PubType 
(Review/Ana

lysis) 

Specific 
Distractio

n Type 

Focus 
parts 

Indicators Methods 
Measurement 

tools 
Equipment Distraction Activities 

2019 
Khan & 
Lee 

Review 

Olfactory 

  

Gaze patterns 

  EEG 

 commercial sensors 
include Drypad 
Sensors, Imotive 
Headset, MindWave 
Headsets, 
NeuroSky’s Dry 
Sensor, Quasar 
Sensors, Flex 
Sensors [89,111–
115] 

  

Gustatory Head movements 

Visual 
Temperature at the tip 
of nose 

Auditory Skin temperature 

Biomechan
ical 
distraction   

Cognitive 

2019 
Costa et 
al. 

Αnalysis 

Visual 
Saccade
s 

SEP, PERCLOS,Blink 
rates 

Eye 
movement 
encoder 

Eye tracking  
Commercial Eye and 
Head Tracker 

Mobile phone 

Manual Fixation 
no hands, one, both 
hands 

Wordbooks 
manager 

Car telematics 
Ancho radar for 
physiological 
measurements 

External events 

Cognitive Blinks 

Standard Deviation of 
(Left/Right Gaze 
direction, Head 
direction), average of 
(L/R Pupil Dialation, 
Avg Heart Rate) 

Feature 
extraction & 
ML 

Heart 
measurements 

  
Interaction with passengers or 
infotainment 

    

mean/variance of 
position and rotation, 
time for head nose 
vector directed to 
each of four 
quadrants in the fov 

  Head pose     

 

2019 Huang et al. Analysis 
Manual 

Driver's 
hands 

bimanual motions on the 
steering wheel, head turn 
angles, and off-wheel 
detection 

Hand, Head tracking and 
modelling (Kalman 
Filters) 

magnetometer, gravity 
sensor, and 
accelerometer 
measurements 

Smartwatch 
  

Visual 
Head 
motions 

Hand magnetic ring 
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Incorrect 
steering 
control 

  
Head magnetic 
eyeglasses clip 

2019 
Koohestani 
et al. 

Analysis Visual/General   
EDA, heart rate, perinasal 
perspiration,breathing rate 

  

Palm EDA, Visual Facial 
Cam, Thermal Facial 
Cam, Eye Tracking 
sensor, Adrenergic 
Sensor, Operational 
Theater Cam 

    

2019 Botta et al Analysis Visual   Eyes position 

Speed, Steering angle, 
lateral position, yaw rate, 
lane width, road 
curvature, heading anlge, 
accelerator pedal, brake 
pedal, xy coordinates of 
car in front, speed of car 
in front 

Camera, CAN     

2019 
Aksjonov et 
al. 

Analysis General   

Road Radius, Speed limit, 
Lane keeping, speed 
deviation, lane keeping 
offset 

Machine Learning & 
Fuzzy Logic 

GPS, speed sensor   Text messages/mobile phone 

2019 Billah et al. Analysis     
Hand, Lips, Forehead & 
combinations of those with 
coordinates 

Feature classification Camera 
KLT POINT TRACKER, 
Sony Cyber Shot 14.1 
MP camera 

Talking, Texting, Eating, 
Inattention 

2019 
McDonald et 
al. 

Analysis 
Visual, 
Cognitive, 
Manual 

  

Driving behavior measures 
included instantaneous 
measures of acceleration, 
brake force, distance, lane 
offset, lane position, speed, 
and steering signals 

Feature extraction, 
machine learning 
classification 

      

2019 Lohani Review     

driver physiological 
measures included perinasal 
perspiration, palm 
electrodermal activiy, heart 
rate, breathing rate and eye 
tracking data 

    Driving Simulator   

2019 Chui et al. Analysis Visual 
Head 
motion 

Motion coefficient (1- 
difference of correlation 
between two images from a 
video feed) 

Video feeds   NeuroDyne Medical, 

Nodding, Head Shaking 
Moving head 
Head dropping down 
Blinking 

2019 
Khandakar 
et al. 

Analysis Mobile phone   
OBD-II, Accelerometer, 
Smartphones 

        

2019 Dehzangi Analysis     EEG 
Dimensonality reduction, 
feature selection 

EEG,ECG,Motion, CAN 
BUS 
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2019 
Yadawadkar 
et al. 

Analysis     

Lateral acceleration, Low 
speed, Right Marker, Speed, 
Lateral distance, 
Longitudianl distance, 
Variance of speed 

Dimensionality reduction, 
feature extraction,time-
series classificaiton 

Video, Vehicle data     

2019 Kanaan et al Analysis General/Visual 

GPS speed 
and steering 
wheel 
position 

Long off path glances >2sec, 
Secondary task engagement 

HMMss       

2018 
Kim & Yang 
(I) 

Analysis 

Visual 

  

Steering control response 

    

FaceLab 4.6 

  

Cognitive   
Bio measurements: 
Zephyr 

  Steering wheel angle   

  
Eye Tracking (Gaze: 
Percentage, 
Area/Saccades), 

  

   Heart rate   

  deviation from centerline   

2018 
Kim & Yang 
(II) 

Analysis 

Visual 

  

Steering control response 

  Camera, CAN 
Logitech Surveillance 
camera 

  
Cognitive Lateral vehicle motion 

  Heart rate 

  Gaze 

2018 
Tarabay et 
al. 

Analysis Auditory/Vocal   

speed, lane position, pedal 
depression, brake, and 
reaction time, in addition to 
physiological measures, 
such as heart rate and skin 
conductance level were 
analyzed at each of the road 
situations 

    
MEDAC System/3 
instrumentation 

  

2018 Kuo et al. Analysis Visual 

head pose, 
gaze and 
pupil metrics 
and eyelid 
opening 

Perclos     

Seeing Machines 
automotive-grade driver 
monitoring system, 
Mobileye, Blackvue 
forward-facing camera, 
steering wheel angle 
sensors 

  

2018 Li et al. Analysis Visual   
Micro Sleep Time, 
Proportion of Vehicle's 
lateral offset 

Dempster Schafer 
Evidence Theory and 
Neural Networks 

  
Two monocular cameras 
(lane scenarios and 
driver behaviour) 

  

2018 
Dumitru et 
al. 

Analysis Visual   
Number of glances, Glance 
duration 

ANOVA   
Tobii X120 eye tracking 
system 

Facebook distraction 

2018 Bakhit et al. Analysis Visual 
glance 
behaviour 

glance duration, eccentricity 
penalty function, distraction 
index, Renewal cycles 

      See Table 3 in manuscript 
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2018 Tran et al. Analysis General (All) 

In Lit 
Review 
describes 
technologies 
for 
distraction 
studies 

  
Image Classification, 
Deep Learning 

, Camera for driver's face 
Camera for driver's 
distraction 
Camera for external 
environment 

  

Texting, Talking phone, Radio 
Operations, Drinking, Reaching 
behind, Hair & Makeup, Talking to 
passengers 

2018 
Ali & 
Hassan 

Analysis 
General 
distraction 

  Rotation angle of head Machine Learning 

Video, Facial 
components, areas of 
triangles, angles and 
motion vectors 

    

 

2018 
Taherisadr 
et al.  

Analysis General   

ECG 
Mel-frequency 
cepstrum and 
time-frequency 

Video images   

Phone 

EEG 

Images Feature 
extraction and 
classification 
based on CNN 

Texting, Talking phone, Radio Operations, 
Drinking, Reaching behind, Hair & Makeup, 
Talking to passengers 

GSR   Q&A 

Motion     

2017 
Papantoniou 
et al. 

Review 
General 
distraction 

  

Longitudinal control 
measures  
Speed 
Headway 
Lateral control measures 
Lateral posiition  
Std Dev of Lateral position  
Steering wheel  
Reaction time measures 
Gap acceptance 
Eye movement measures 
Physiological measurements 
Cardiac (heart rate, heart 
rate variability, blood 
pressure) 
Respiratory 
Eye (horizontal eye 
movements, eye blink rate, 
interval of clossure) 
Speech (pitch,rate,loudness, 
jitter and shimmer) 

 

GPS, Video-
camera, 
accelerometers, 
radar and video lane 
tracking, EEG, EOG 

  

2017 
Seppelt et 
al. 

Analysis Visual 
Glance 
duration 

Mean single glance duration 

  

Atten-D algorithm 

camera, glare sensor   Count of glances Eye tracking  

total glance time   

2017 
Hari & 
Sankaran 

Analysis 
None (general 
distraction) 

Head 
position and 
orientation 

  
Dimensionality 
reduction 

  dashboard camera 
Non - Distracted (approximately the pose 
angles are varying from −15◦ to +15◦), 
Small Distraction to the left side (ap- 
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proximately the pose angles are varying 
from −30◦ to −16◦), High Distraction to the 
left side (approximately the pose angles are 
varying from −90◦ to −31◦), Small 
Distraction to the right side (approximately 
the pose angles are varying from +16◦ to 
+30◦) and High Distraction to the right side 
(approximately the pose angles are varying 
from +31◦ to +90◦) 

Pose estimation   

2017 
Hansen et 
al. 

Analysis Visual 
Head 
motion and 
gaze 

audio, video, GPS, and IMU 
sensor signals 

Machine learning 
classifiers 

Smartphone 
application, audio, 
video, GPS, and 
IMU sensor signals 

Smartphone 
Radio, GPS operating, GPS following, 
Phone operating, Phone Talking, 
Converstation 

2016 
Sendra et 
al. 

Analysis 
General 
distraction 

        

2 pressure sensors, 2 
temperature sensors on 
steering wheel, proximity 
sensors based on LDR 
installed in the headrest, 
shock sensors 

  

2014 
Almahasneh 
et al. 

Analysis Cognitive 
lane 
keeping, 
crashes 

alpha, beta, theta bands   EEG     

2008 
Hammoud 
et al.  

Analysis Visual 
Eye 
positions 

head turns 
eye tracking and 
head monitoring 

raw video images     

  



D2.1 State of the art on measuring driver state and task complexity in real-time 

©i-DREAMS, 2020       Page 122 of 143 

Annex D: Study review on measuring fatigue and sleepiness 

Authors Year 
Fatigue or 
Sleepiness 

Indicators 
Technical 
equipment 

Context & Design 
Outcome 
variables  

Results Conclusion 
(for i-DREAMS) 

Barua, 
Ahmed, 
Ahlström & 
Begum 

2019 Sleepiness  EEG,  

 EOG  

 KSS 

EEG and EOG 
electrodes 

Road safety; simulator 
experiment; proposing an 
automatic sleepiness 
classification system; two 
conditions alert (day drive) 
and sleep deprived (night 
drive); three road scenarios; 
self-assessment on KSS; n = 
30 

EEG power 

Blink duration 

PERCLOS 

 Sleepiness detection 
based on EEG, EOG 
and contextual 
information 
demonstrated using four 
established classifiers 

 Presented an automatic 
driver sleepiness 
detection system based 
on EEG, EOG and 
contextual information 

+ Using multiple indicators 
to detect sleepiness in 
simulated drives 

- Applicability of electrodes 
for real world driving  

- Intrusive 
 

Buendia et 
al.,  

2019 Sleepiness  ECG 

 KSS 

ECG using 
Vitaport 2 and 
Vitaport 3 

Road safety; analysis of 
motorway driving data; 
recording ECG to monitor 
differences in physiology 
between sleepy and awake 
drivers; self-assessment on 
KSS; n = 76 

Heart rate 
variability, 
average heart 
rate, NN 
intervals,  

 HR decreased with 
increasing sleepiness, 
HRV overall increased, 
and HRV parameters 
representing with 
parasympathetic branch 
of ANS increased 

 The parameters 
representing the 
sympathetic branch only 
increased with 
increasing KSS, which 
could be due to stress 

+ Using ECG to detect 
sleepiness 

+ Multiple HRV indices  
+ Relationship between 

HRV and subjective 
sleepiness 

- Paper focusing on 
different methods of 
detecting outliers 

- Applicability of ECG 
electrodes to real world 
driving 

 

Cori, 
Anderson, 
Soleimanloo, 
Jackson & 
Howard 

2019 Sleepiness 
(drowsiness) 

 Eye blink 
parameters 

EOG, video, 
infrared 
oculography 

Review paper Blink 
frequency, blink 
duration, 
PERCLOS, 
eyelid speed 

 Most eye blink 
parameters varied with 
drowsiness 

 Blink duration and 
PERCLOS most robust 

 All blink parameters 
were associated with 
and predicted 
conventional drowsiness 
measures 
(PVT/subjective/driving 
tasks) 

+ Review of eye blink 
parameters as an 
assessment of drowsiness 

+ Association of eyeblink 
parameters with 
drowsiness measures 

- Interindividual differences 
- Further validation required  
- Variety of techniques used 
- More robust for extreme 

levels of sleepiness rather 
than mild sleepiness? 
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Diaz-Piedra, 
Gomez-Milan 
& Di Stasi 

2019 Sleepiness  EEG 

 Nasal skin 
temperature 

 Driving 
performance 

 SSS 

SOMNOwatch 
+ EEG-6 
electroencephal
ograph, infrared 
camera, 

Road safety; simulator 
experiment; assessed 
validity of nasal temperature 
to monitor changes in 
arousal levels; experiment 
was conducted during the 
morning; self-assessment on 
SSS; n = 12 

Nasal skin 
temperature, 
frontal delta 
EEG activity, 
speeding time  

 Results suggest nasal 
skin temperature as a 
valid method for 
recognising changes in 
arousal (from alertness 
to drowsiness) 

+ Non-invasive technique 

- Focus of camera is on tip 
of nose, may be issues if 
people move their head 

- Research conducted in 
the morning when 
alertness is generally high 

- Small sample size 

Liang et al., 2019 Sleepiness 
(drowsiness) 

 EEG 

 Driving 
performance 

 Eyelid 
measures 

EEG, EOG 
electrodes, in-
vehicle 
investigator 

Road safety; field test 
driving; 2h instrumented 
drive, after a night shift and 
after a night of rest; aimed to 
build a predictive model of 
drowsiness events; n = 16 

EEG 
characterised 
sleep episodes, 
lane crossings, 
PERCLOS 

 Overall the best models 
for both measures of 
drowsiness were those 
that considered driver 
individual differences 
and eyelid measures. 

 These measures should 
be considered when 
predicting drowsiness 
events.  

+ Using multiple indicators to 
detect sleepiness in 
simulated drives 

+ Real scenario driving with 
shift workers 

+ Results can benefit the 
development of real time 
drowsiness detection 

- Focusing on developing 
models to predict driver 
sleepiness 

- Intrusive (electrodes) 

Sparrow, 
LaJambe & 
Van Dongen 

2019 Sleepiness 
(drowsiness) 

 EEG 

 Ocular 
measures 

 Cardiac 
measures 

 Performance 
measures 

EEG, EOG, 
eyeglasses, 
ECG, FIT,  

Review paper EEG activity, 
PERCLOS, 
blink rate, blink 
duration, pupil 
size, HRV, 
PVT, driving 
performance 

 EEG and ocular 
parameters can be 
limited in detecting lower 
levels of drowsiness 

 Cardiac measures can 
be confounded by other 
influences and not 
widely used in 
operational settings for 
sleepiness 

 Vigilance attention and 
performance measures 
require driver 
involvement  

 Subjective measures 
relatively easy to get, 
however associations 
with objective 
performance can vary 

 Individual differences 

+ Review of different 
drowsiness measures 
used in commercial 
vehicles  

+ Systems to capture 
drowsiness may need to 
combine different 
measures 

- Interindividual differences 
- Variety of techniques used 
- EEG and ocular measures 

more robust for extreme 
levels of sleepiness rather 
than mild sleepiness? 

- Cardiac measures not 
widely used as a measure 
of drowsiness 



D2.1 State of the art on measuring driver state and task complexity in real-time 

©i-DREAMS, 2020       Page 124 of 143 

Authors Year 
Fatigue or 
Sleepiness 

Indicators 
Technical 
equipment 

Context & Design 
Outcome 
variables  

Results Conclusion 
(for i-DREAMS) 

Wu et al., 2019 Sleepiness 
(drowsiness) 

 EOG 

 KSS 

 Driving 
performance 

EOG 
electrodes 

Road safety; simulator 
experiment; investigating the 
effects of manual driving on 
driver drowsiness and 
performance; three 
conditions (automated 
driving for 3min; 31min; 
10min -10min manual 
driving-automated driving for 
10min); self-assessment on 
Japanese version of KSS; n 
= 115 

Eyeblink 
duration, 
reaction time, 
time to steer, 
time to brake, 
standard 
deviation of 
steering wheel 
angle, 
minimum 
Time-to-
Collison, KSS 

 Driver sleepiness 
decreased when 
scheduled manual 
driving began, but 
effects only lasted for a 
short duration (4-6min) 

 Older drivers reacted 
significantly more slowly 
in steering and braking 
with scheduled manual 
driving 
 

+ Using multiple indicators to 
detect sleepiness in 
simulated drives 

+ Potential differences in 
age 

- Applicability of electrodes 
for real world driving  

- Intrusive 
- Short task switching 

durations 
- No information on 

inducing sleepiness or 
time of day 

Ahlström, 
Anund, Fors 
& Åkerstedt 

2018 Sleepiness  EEG 

 EOG 

 Driving 
performance 

 KSS 

EEG and EOG 
electrodes 

Road safety; simulator 
experiment; to investigate 
the effect of light conditions 
on driver sleepiness; 
conditions daylight vs 
darkness and daytime vs 
night-time; self-assessment 
on KSS; n = 30 

EEG activity, 
eyeblink 
duration, line 
crossings, 
lateral position, 
speed 

 KSS and blink durations 
increase with sleep 
deprivation. Darkness 
also has an effect 

 Light had an 
independent effect KSS, 
lateral position, EEG 
activity, blink duration  

 The day/night condition 
had profound effects on 
lane crossings, KSS, 
blink duration, speed  

+ Using multiple indicators to 
detect sleepiness in 
simulated drives 

+ Differences in day/night 

 

- Applicability of electrodes 
for real world driving  

- Intrusive 

Ahlström, 
Anund, Fors 
& Åkerstedt 

2018 Sleepiness  EEG 

 EOG 

 KSS 

 Driving 
performance 

EEG and EOG 
electrodes 

Road safety; simulator 
experiment; aim to compare 
two road environments and 
their effects on driver 
sleepiness; conditions rural 
road low traffic density vs 
suburban road with higher 
traffic density, daytime vs 
night-time; n = 30 

EEG activity, 
blink duration, 
line crossings, 
relative speed, 
steering 
activity, pedal 
activity 

 Only minor effects of 
road environment 

 Increased subjective 
sleepiness, longer blink 
duration and increased 
EEG alpha content due 
to time on task and 
night-time driving 

+ Using multiple indicators to 
detect sleepiness in 
simulated drives 

+ Increased sleepiness from 
time on task and night-
time driving, relevant 
factors to be considered 

- Applicability of electrodes 
for real world driving  

- Intrusive 
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Ahlström, 
Anund & 
Kjellman 

2018 Sleepiness, 
fatigue, stress 

 EOG 

 ECG 

 EDA 

 Eye tracking 

 KSS 

 Video 
recording  

Smart Eye Pro 
7.0, EOG, 
Vitaport 2, EDA 
wrist device 

Road safety; real world 
driving, exploratory study to 
investigate fatigue and 
stress levels of city bus 
drivers; no manipulation of 
stress of sleepiness levels; 
data collected during 
morning shift and during the 
afternoon shift; fatigue 
function of time on task; self-
assessment on KSS; n = 15 

Blink durations, 
KSS, HRV, 
EDA signals 

 Without manipulation, 
during ordinary daytime 
bus route there are 
instances of sleepiness 
and stress in some 
individuals 

 Low reported KSS levels 
– understanding or 
comfort with verbal 
reporting? 

 Individual differences 
relate to use of 
personalised algorithms 

+ Bus drivers 

+ Paper states the 
importance of context 
when analysing visual 
behaviour 

+ importance of establishing 
‘on-road region’ when 
using eye tracking other 
false reports of distraction 

+ Importance of considering 
external factors alongside 
physiological measures 

- Sleepiness function of 
KSS, fatigue function of 
time on task 

- Exploratory study 

Aidman et al., 2018 Sleepiness 
(drowsiness) 

 Ocular 
parameters 

 Driving 
performance 

Optalert 
glasses and 
Alertness 
Monitoring 
System - 
infrared sensor 
measuring 
ocular 
parameters and 
converting to 
JDS every 60s 

Road safety; simulator 
experiment; study aimed to 
examine the effects of repeat 
dose caffeine on sleepiness 
and driving performance; 
50h sleep deprivation; 
placebo or caffeine group; n 
= 11 

JDS (Johns 
drowsiness 
scale); lane 
keeping, speed 
maintenance  

 Sleepiness increased 
and driving performance 
declined during the 
study 

 Lateral lane position and 
speed variability 
associated with JDS 
scores and sleepiness 

 Caffeine mitigated 
impairments in driving 
performance – reducing 
sleepiness and 
weakening impact on 
driving errors 

+ Sleepiness measures 
associated with driving 
performance  

+Optalert glasses more 
usable in real world driving 
compared to electrodes 

- Requires the driver to 
wear Optalert glasses 

- 50h sleep deprivation not 
likely a real-world scenario 

Anund, 
Ahlström, 
Fors & 
Åkerstedt 

2018 Sleepiness  EOG 

 KSS 

 Driving 
performance 

 Reaction 
time  

EOG 
electrodes, 
PVT reaction 
time task 

Road safety; simulator 
experiment; investigate 
differences in sleepiness in 
professional and non-
professional drivers; day vs 
night drive to induce 
sleepiness; three road 
scenarios driven in 
succession (rural low 
demand daylight, rural low 
demand darkness, suburban 

Blink duration, 
KSS, line 
crossings, 
speed, mean 
PVT reaction 
time and 
percentage of 
lapses 

 Professional drivers self-
report significantly lower 
sleepiness than non-
professional drivers 

 Professional drivers 
showed longer blink 
durations, more line 
crossings and drove 
faster 

+ Sleepiness measures 
associated with driving 
performance  

+ Differences in professional 
and non-professional 
drivers may be relative 
factors to consider 

+ Differences in self-reported 
sleepiness and objective 
measures of sleepiness 
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high demand daylight; self-
assessment on KSS; n = 30 

- Applicability of electrodes 
for real world driving  

- Intrusive 

Anund, Fors, 
Ihlström & 
Kecklund 

2018 Sleepiness  EEG 

 EOG 

 KSS 

 PVT 

Vitaport 2 for 
electrophysiolo
gical 
measurements, 
electrodes, 
Vbox for speed 
and GPS 
position, video 
cameras 

Road safety; real road 
driving with bus drivers; 
investigated the effect of spilt 
shift working on sleepiness 
and driving performance 
during the afternoon; one 
drive during a split shift and 
one drive after being off duty 
for the morning; self-
assessment on KSS; n = 18  

Blink duration, 
KSS, reaction 
time, EEG 
based 
Karolinska 
Drowsiness 
Score 

 Increased sleepiness 
associated with split shift 
schedules  

 Strong individual 
differences  

+ Real road driving with a 
sample of shift workers 

+ Individual differences in 
development and 
experience of sleepiness 

+ Bus drivers 

- Applicability of electrodes 
for real world driving  

- Intrusive 

Ariansyah, 
Caruso, 
Ruscio & 
Bordegoni 

2018 Fatigue 
(mental 
workload) 

 Cardiac 
activity 

 Skin 
response 

 Driving 
performance 

 NASA-TLX 

 SOFI-20 

Thought 
Technology 
physiological 
sensor 
biograph infinity 
system, BVP 
sensor 

Road safety; simulator 
experiment; aim to 
investigate whether a 
measure of cardiac activity 
could show differences of 
different driving conditions 
on workload; car following 
task with visual ADAS; 
monotonous (constant 
speed) vs active (variable 
speed) condition; self-
assessment on NASA-TLX 
and SOFI20; n = 14 

Mean heart 
rate, HRV, skin 
conductance, 
respiration 
rate, blood 
volume 
pressure, 
lateral position, 
steering wheel 
movement, 
NASA-TLX, 
SOFI-20 

 Workload increased over 
time regardless of 
driving condition 

 Main effect of driving 
condition resulted in 
higher level of 
sympathetic activation 
during variable speed 
driving 

+ Obtaining heart rate 
measures through a 
sensor on the index finger 

+ Focus on fatigue rather 
than sleepiness 

+ Increased heart rate 
measures linked to 
increased workload 

- Likelihood of drivers 
consistently wearing finger 
sensor? 

Balasubrama
nian & 
Bhardwaj 

2018 Fatigue 
(cognitive 
fatigue) 

 cECG 

 EEG 

EEG 
electrodes, 
eECG 
electrodes in 
seat (non-
contact ECG 
system) 

Road safety; simulator 
experiment; estimating driver 
fatigue based on cECG and 
EEG; correlate eECG and 
EEG signals to established 
method to analyse driver 
fatigue; driving in simulated 
mild traffic for 120min 
continuously; n = 35 

HRV, EEG 
power activity 

 Estimated coherence 
between ECG and EEG 
signals found to be good 

 During simulated driving, 
the changes in EEG 
power bands is 
proceeded by changes 
in cardiac activity 
 

+ Estimations of fatigue 
using eECG and EEG 

+ eECG correlated with EEG 

+ eECG placement more 
applicable for real world  

+ Focus on fatigue rather 
than sleepiness 

- Drivers only completed one 
120min drive 
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Caponecchia 
& Williamson 

2018 Sleepiness 
(drowsiness) 

 Eye tracking 

 Driving 
performance 

 Sleep 
patterns 

Smart Eye Pro 
tracking 
system, 
actiwatch 

Road safety; simulator 
experiment; investigated the 
effects of mild sleep 
deprivation on driving 
performance; three groups 
(no deprivation, 2h 
deprivation, 4h deprivation); 
45min drive in morning and 
evening; n = 45 

PERCLOS, 
blink duration, 
lane deviation, 
speed 

 Measurements of eye 
closure didn’t show 
sleepiness in drivers 
despite performance 
impairments 

 During afternoon, drivers 
reported more 
sleepiness  

 Increased lane 
deviations during the 
morning following sleep 
deprivation 

+ Sleep deprivation resulted 
in increased lane 
deviations 

- No significant effects of 
sleep deprivation on 
measures of blink duration 
or PERCLOS. 

- Sensitivity of the system? 

Choi, Koo, 
Seo & Kim 

2018 Sleepiness 
(drowsiness), 
fatigue and 
stress 

 PPG 

 GSR 

 Driver 
movement 

 Driver facial 
measures 

Wrist worn 
manually built 
wearable 
device using 
commercially 
available parts, 
camera, 
additional ear 
clip for PPG 

Road safety; simulator 
experiment; investigating a 
system to detect and 
distinguish driving 
conditions; drivers drove four 
conditions (normal, stressed, 
‘drowsy’, fatigued – stress 
induced by increased traffic, 
drowsy induced by 
monotonous driving, fatigue 
last drive) n = 28 

Changes in 
blood volume, 
skin 
conductance, 
temperature, 
facial signs of 
sleepiness, 
acceleration, 
rate of rotation 

 Device distinguished 
stress, fatigue and 
sleepiness from normal 
driving condition 

 Classification accuracy 
98.43% for cross 
validation on the data 

 Accuracy 68.31% for the 
four conditions 

 Reported accuracy of 
84.46% if drowsy and 
fatigue same condition  

+ Non-intrusive wearable 
device 

+ Distinguished differences 
in driving conditions 

- Were the conditions 
enough to induce the 
different states? 

- Unlikely to measure 
sleepiness 

- Fatigue and 
sleepiness/drowsiness not 
the same state 

- Required pre-processing 
of the data 

Darzi, 
Gaweesh, 
Ahmed & 
Novak 

2018 Sleepiness 
(drowsiness), 
fatigue (with 
distraction, 
stress and 
high 
workload) 

 ECG 

 GSR 

 Driving 
performance 

 Personality 
stress 

 Mood 

 Workload 

ECG 
electrodes, 
GSR sensors 
on palm of 
hand, 
respiration 
sensor on 
nose, 
temperature 
sensor on little 
finger 

Road safety; simulator 
experiment; investigate 
whether cause of driver’s 
hazardous state can be 
identified by combination of 
vehicle data, driver 
characteristics and 
physiological measures; self-
report on IPIP, PSS-10, 
STAQ, NASA-TLX; eight 
different scenarios inc. 
weather, traffic density, cell 
phone use; mild sleep 
deprivation induced by less 
than 6h sleep; drivers had 

Mean heart 
rate, SD of IBI, 
ECG signal 
mean and 
gradient, skin 
conductance, 
skin 
temperature, 
mean 
respiration rate, 
lane position, 
velocity, throttle 
force, slip level 
of front tyres 

 Classification for sleep 
deprivation 98.8%, traffic 
density 91.4%, cell 
phone use 82.3% and 
weather 71.5% 

 Vehicle data most useful 
for classification of 
weather and traffic 
density 

 Physiology and driver 
characteristics most 
useful for classification 
of sleep deprivation and 
cell phone use 

+ Various measures to 
detect driver state 

+ Different types of info lead 
to higher classification 
accuracy 

- Applicability of electrodes 
for real world driving  

- Intrusive 
- Results showed driver 

characteristics e.g. mood 
useful to classify drowsy 
state rather than 
physiological measures 
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four sessions (2x drowsy 2x 
alert); n = 21 

Fors, 
Ahlström & 
Anund 

2018 Sleepiness  EOG 

 KSS 

 Driving 
performance 

EOG 
electrodes, 
Vitaport 3, 
Smart Eye Pro 
5.7 system  

Road safety; simulator and 
real road comparison; 
daytime vs night-time driving 
condition and real road vs 
simulator condition; self-
assessment on KSS; n = 16 

Blink duration, 
percentage of 
road centre 
gaze, speed, 
line crossings, 
KSS 

 Simulator driving 
resulted in higher KSS, 
longer blink durations, 
lower percentage gazes 
to centre of road and 
higher speed 

 Night drive showed 
increased lane 
crossings, increased 
KSS, higher blink 
durations 

+ Differences in simulator 
and real-world driving 

+ Smart Eye Pro system 
non-intrusive  

+ Well use measures of 
sleepiness 

- Applicability of electrodes 
for real world driving  

- Electrodes intrusive 

Lees et al.,  2018 Fatigue and 
sleepiness 

 EEG 

 PSQI 

 KSS 

 ESS 

 CIS20 

QuikCap EEG 
electrodes 

Safety; simulator 
experiment; aimed to 
investigate the capability of 
monopolar EEG analysis as 
a prediction of 
fatigue/sleepiness; data 
collected between 1000-
1400; n = 63  

EEG activity, 
KSS, PSQI, 
ESS, CIS20 

 Self-reported sleepiness 
mainly associated with 
EEG delta, theta and 
alpha variables  

 Self-report sleepiness 
predicted to varying 
degrees of success by 
changes to monopolar 
EEG variables 

+ Train drivers 

- EEG data collection 
conducted during active 
phase (10min of driving) 

- Applicability of EEG cap to 
real world train driving 

- Was time of day enough 
to elicit sleepiness? 

Length of task enough to 
elicit fatigue? 

Ma, Gu, Jia, 
Yao & Chang 

2018 Fatigue and 
sleepiness 

 EEG 

 Eye tracking 

 Driving 
performance 

 SOFI 

Tobii Glasses II 
eye tracking 
system, EEG 
cap 

Road safety; simulator 
experiment; investigated the 
effects of speed variability on 
driver fatigue; monotonous 
following 60min drive; self-
assessment on SOFI-C 
(Chinese version); n = 21 

EEG activity, 
pupil diameter, 
lane position, 
speed, car 
following 
distance, 
subjective 
fatigue 

 60min monotonous 
driving elicited driver 
cognitive fatigue 
(underload) 

 Differences in speed 
variability groups 
resulted in differences in 
physiological measures 
of sleepiness 

+ Eye tracking glasses non-
intrusive 

- Applicability of EEG cap 
for real world driving  

- EEG cap/electrodes 
intrusive 

- Only one eye tracking 
measure 

- Fatigue mainly measured 
using self-assessment  

- May interfere with glasses 
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Schmidt, 
Laarousi, 
Stolzmann & 
Karrer-Gauss 

2018 Sleepiness 
(drowsiness) 

 EOG 

 Eye tracking 

 KSS 

AntiCAP, head 
mounted eye 
tracker 
Dikablis, 
electrodes 

Road safety; simulator 
experiment; aim to evaluate 
the performance of an EOG 
and camera-based blink 
detection process; between 
subjects manual vs 
automated condition; 6pm or 
10pm drives; comparison of 
eye blink detection 
algorithms; self-assessment 
on KSS; n = 30 (14 
monotonous manual, 16 
monotonous automated 
driving sessions) 

EOG signals, 
real eye closure 
events, KSS 

 Blinking behaviour 
significantly affected by 
drowsiness 

 Automated driving also 
impacts blinking 
behaviour 

+ Eye tracking measures as 
a detection of drowsiness 

- Paper aimed to compare 
difference algorithms 

- Applicability of EOG and 
head mounted eye tracker 
for real world driving  

- EOG cap/electrodes 
intrusive 

Shiferaw et 
al., 

2018 Sleepiness 
(drowsiness) 

 Eye tracking 

 Driving 
performance 

 KSS 

 PVT 

Cap mounted 
eye tracking 
system 
(SensoMotoric 
Instruments) 

Road safety; real driving on 
a closed track; investigate 
gaze behaviour as an 
indicator of drowsiness; one 
drive following sleep 
deprivation and one drive 
following normal sleep; self-
assessment on KSS; n = 9 

Gaze 
behaviour, blink 
duration, 
saccade 
amplitude, lane 
departure, 
KSS, reaction 
time 

 Sleep deprivation 
resulted in increased 
blink duration and 
saccade amplitude; rate 
of fixations reduced 

 Increased stationary 
gaze entropy associated 
with increased odds of 
lane departure 

+ Association of eye tracking 
measures and driving 
impairment 

+ Use of gaze direction and 
scanning behaviour as 
indicators of drowsiness 

- Small sample 
- Applicability of cap to real 

word driving 

Wang et al.,  2018 Fatigue   Wireless, dry 
EEG 

 Driving 
performance  

Dry EEG cap Road safety; simulator 
experiment; aim to develop a 
method of fatigue detection 
based on dry EEG signals; 
two sessions of 90min drive 
no break; self-assessment 
on NASA-TLX; n = 10 

EEG activity, 
reaction time 

 Dry EEG method with 
NASA-TLX response 
indicated changes in 
mental fatigue 

 Changes in reaction time 
consistent with fatigue 
prediction  

+ Wireless, dry electrodes 

- Small sample 
- Applicability of cap to real 

world driving 
- Results based on two 

90min drives 

Zhang et al., 2018 Sleepiness 
(drowsiness) 

 EEG 

 Driving 
performance  

EEG cap Road safety; simulator 
experiment; car following 
task; study conducted 
between 1000-1700; n = 22 

EEG activity  Sensitive index to detect 
EEG changes during 
monotonous driving  

 Differences in EEG 
activity before and after 
driving 

 Differences found in 
temporal and frontal 
locations 

- Applicability of cap to real 
world driving 

- Was time of day enough 
to elicit drowsiness? 
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Ahlström, 
Jansson &  
Anund 

2017 Sleepiness  EEG 

 Driving 
performance  

 KSS 

EEG electrodes Road safety; exploratory 
simulator study; investigate 
whether lane departures are 
associated with local sleep 
measured by EEG; drives on 
six occasions, three drives 
(including changes in road, 
traffic density and daylight 
and night-time), self-
assessment on KSS; n = 30 

EEG activity, 
lane 
departures, 
KSS 

 The number of lane 
departures increased 
exponentially with KSS 

 Global theta power lower 
for KSS ≤5 compared to 
KSS 9 

 No correspondence 
between global theta 
and lane departures 

 Unit increase in theta 
power in certain brain 
regions associated with 
increase in odds of 
departing the road 

+ Changes in local 
sleepiness associated with 
driving impairments 

- Applicability of electrodes 
to real word driving 

- Exploratory study 

 

Anund, Fors 
& Ahlström 

2017 Sleepiness  EOG 

 Driving 
performance 

 KSS 

EOG 
electrodes, 
Vitaport system 

Road safety; simulator study; 
investigate differences in 
daytime and night-time 
driving during self-reported 
sleepiness and long blink 
durations, in terms of line 
crossings; two drives; n = 16 

Blink duration, 
lateral position, 
KSS, time on 
task 

 No difference in % line 
crossings during day 
and night when reported 
high LSS 

 Significant difference in 
percentage line 
crossings between day 
and night during long 
blink durations 

 KSS as predictor of line 
crossings most 
promising measure 

+ Associations between eye 
tracking measures and 
subjective sleepiness with 
driving performance 

+ Driver awareness of own 
sleepiness 

- Applicability of electrodes 
to real word driving 

- Subjective measure most 
promising predictor of 
driving impairment (line 
crossings)  

He et al., 2017 Sleepiness 
(drowsiness) 

 Eye tracking 

 Driving 
performance 

 KSS 

 SSS 

Google glass 
drowsiness 
detection 
system  

Road safety; simulator study; 
development and testing of 
detection system; 
comparison of driving 
performance and eye blinks; 
study conducted between 
0800-2000; three driving 
sessions continuously; self-
assessment on KSS and 
SSS; n = 23 

Blink frequency 
braking 
response time, 
headway, lane 
position, lane 
excursions 
KSS, SSS  

 Drivers classed as 
drowsy had longer 
braking responses, 
lower braking response 
rates, increased lane 
deviations and lane 
excursions 

+ Uses sensors of 
commercially available 
product to monitor eye 
blinking frequency 

+ Associations between 
drowsiness and driving 
impairments 

- Device interferes with 
glasses 

- Only used subjective 
ratings to measure 
sleepiness 

- Needs further validation 
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Ahn, Nguyen, 
Jang, Kim & 
Jun 

2016 Sleepiness   EEG 

 ECG 

 EOG 

 fNIRS 

Electrodes, 
webcam, 
custom built 
fNIRS system 

Road safety; simulator study; 
two conditions, well rested 
and sleep deprived (stay up 
all night); driving occurred 
before 9am for 30min; self-
assessment on subjective 
questionnaire; n = 11 

EEG activity, 
heart rate (R-
peak and RR-
peak), changes 
in oxy-
haemoglobin 
and 
haemoglobin 
concentration, 
eye blinking 

 Significant features in 
EEG, ECG and fNIRS 
data between the 
conditions 

 Heart rate lower in sleep 
deprived drivers 

 EOG showed high 
variability in the data 

+ Detecting sleepiness 
through several measures 

+ Combination of several 
measures improves the 
classification accuracy 

- Applicability of electrodes 
to real world driving  

- Paper focuses on 
developing an algorithm  

- Small sample size 

Alvaro, 
Jackson, 
Berlowitz, 
Swann & 
Howard 

2016 Sleepiness  Ocular 
measures 

 Driving 
performance 

 PVT 

 KSS 

 ESS 
 

Video 
recording, PVT 

Road safety; simulator study; 
aimed to describe the 
duration and frequency of 
eyelid closure during acute 
sleep deprivation; 24h sleep 
deprivation; test battery 
occurred seven times during 
24h period; self-assessment 
on the KSS and ESS; n = 20 

PERCLOS, eye 
closure 
duration, lane 
position, speed, 
braking 
reaction time, 
number of 
crashes, KSS, 
ESS 

 Frequency and duration 
of eyelid closure 
increased with acute 
sleep deprivation 

 Eyelid closure increased 
and became more 
frequent after 17h and 
20h of wakefulness 
lasting up to 18 seconds 

 Lateral lane position, 
breaking RT, crashes, 
vigilance and subjective 
sleepiness correlated 
moderately to high with 
length of eyelid closure 

+ Ocular measures 
associated with increased 
wakefulness 

+ Automated systems often 
use averaged durations 
which may conceal 
instances of prolonged 
eyelid closure 

- Manual scoring of ocular 
measures 

- 24h sleep deprivation 
quite extreme, although 
shift workers may 
experience close to this on 
first night shift 

Jackson et 
al., 

2016 Sleepiness 
(drowsiness) 

 Slow eyelid 
closure 

 PVT 

 Driving 
performance  

 KSS 

Copilot video 
based system, 
PVT,   

Road safety; simulator study; 
aimed to determine whether 
changes in eyelid closure 
occurred following acute 
sleep deprivation; two 
conditions (normal night 
sleep 8h TIB and 24h total 
sleep deprivation); driving at 
1000; self-assessment on 
KSS n = 12 

PERCLOS, 
reaction time, 
lapses, lane 
position, speed, 
braking, 
crashes, KSS  

 24h sleep deprivation 
resulted in significantly 
more eyelid closure, 
greater lane position 
variability, increased 
attentional lapses 

 PERCLOS moderately 
associated with 
variability in vigilance 
performance and lane 
position variation 

+ Ocular measures detected 
impairment due to sleep 
deprivation 

+ Automated measure of 
sleepiness 

- Acute (24h) sleep 
deprivation 

- Small sample 
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Borghini, 
Astolfi, 
Vecchiato, 
Mattia & 
Babiloni 

2014 Fatigue, 
sleepiness 
(drowsiness), 
mental 
workload 

 EEG 

 EOG 

 Heart rate 

Wireless 
wearable EEG 

Review paper EEG power, 
HRV, blink rate, 
blink duration  

 Changes in EEG, EOG 
and heart rate 
associated with changes 
in workload, fatigue and 
drowsiness 

 Drowsiness 
characterised by 
increased blink rate and 
decreased heart rate 

+ Reviews several measures 
and mental states 

- Paper focuses on pilots 
and a few drivers 

- HR more associated with 
mental workload? 

Filtness et al., 2014 Sleepiness  EOG 

 Driving 
performance  

 KSS 

EOG using 
Vitaport 3, 
Smart Eye Pro 
5.7 

Road safety; simulator and 
real road driving; four drives 
on two occasions; simulator 
and real road; daytime 
(afternoon/eve) and night-
time; eye symptoms 
informed from focus groups 
and Accumulated Time with 
Sleepiness scale; self-
assessment on KSS; n = 16 

Blink duration, 
ten eye 
symptoms 
(sore, itching, 
gravel, pain, 
strain, difficulty 
focusing, 
tearful, heavy 
eye lids, 
struggle to 
keep eyes 
open, dry), 
KSS, line 
crossings 

 Four symptoms 
reflective of driver 
sleepiness (eye strain, 
difficulty focusing, heavy 
eyelids and difficulty 
keeping the eyes open) 

 Sore eyes and tearful 
associated with 
sleepiness in simulator 

 Eye symptoms 
associated with 
increased subjective 
sleepiness and driving 
impairments  

+ Simulator and real road 
study 

+ Range of ocular measures  

+ Differences in real road 
and simulator driving 

+ Subjective reports of 
sleepiness and associated 
eye symptoms 

+ Associations of eye 
symptoms with subjective 
sleepiness and impaired 
performance 

- Applicability of EOG for 
real world driving  

- Eye symptoms rated after 
each drive  

Åkerstedt et 
al., 

2013 Sleepiness  EEG 

 EOG 

 Driving 
performance  

 KSS 

EEG, EOG, 
EMG, ECG 
using Vitaport 3 

Road safety; real road 
driving; aimed to describe 
the development of 
sleepiness indicators; day 
(afternoon) and night 
motorway drive of 90mins; 
self-assessment on KSS; n = 
18 

EEG activity, 
blink duration, 
line crossing, 
KDS, KSS, 
speed, lateral 
position,  

 Those that terminated 
the drive showed high 
sleepiness ratings, and 
higher levels of sleep 
intrusions on EEG/EOG 

 Night drive showed 
significant increases in 
all indicator’s vs day 
drive  

 Blink duration differed 
between night and day 
conditions  

+ Real road driving  

+ Multiple measures of 
sleepiness  

- Study not designed to 
identify variables to detect 
drowsiness 

- Focused on the pattern of 
development of sleepiness 
in variables 

- Applicability of electrodes 
to real world driving 
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Golz, 
Sommer, 
Trutschel, 
Sirois & 
Edwards 

2010 Sleepiness  EEG 

 EOG 

 KSS 

 Driving 
performance 

22 devices to 
monitor driver 
sleepiness, 
three video-
based devices 

Review paper and evaluation 
of three video-based 
devices; overnight driving 
simulator study; eight test 
runs with 10min breaks in-
between; self-assessment 
on KSS; n = 14 

PERCLOS, 
EEG, KSS, 
lane position 

 PERCLOS associated 
with higher KSS and SD 
of lateral position in lane 

 PERCLOS has difficulty 
differentiating between 
mild and extreme 
sleepiness 

 Devices may not provide 
valid predictions of 
subjective sleepiness 
and driving performance 
on individual level  

+ Reviewed several ‘fatigue 
monitoring devices’  

+ Evaluated three 
technologies in simulator 
study 

- Technologies available in 
2006 

- Experimental findings 
- Interindividual differences 
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Agrawal et al. 2013  Happiness 

 Anger 

 Sadness 

 Surprise 

Facial features 
(eyes, lips) 

DSC-S5000 
camera, Nikon 
Coolpix-L21 
camera 

HFE; suggestion of a fuzzy 
system to detect emotions 
and facial gestures in 
combination with attentive 
state 

n.a.  90% accuracy for emotion 
detection 

 94.58% accuracy when 
simultaneously detecting 
facial expression 

 Combination of 
emotional and 
attention state  

 

 Lacking theoretical 
concept of emotions  

 Not clear which visual 
material used; 
emotions seem not 
induced but facially 
expressed  

Al Machot  

et al. 

2012  Sadness 

 Anger 

Speech 
recognition 
signals  

(12 features) 

Microphones  

(no type or brand 
reported) 

HFE; Berlin emotional 
speech database for data 
training; Bayesian 
Quadratic Discriminate 
Classifier 

n.a. Total accuracy of three 
emotions (including ‘neutral’) 
is 86.67% 

 Lower accuracy rates 
compared to more 
recent studies 

 Not tested for 
robustness 

Ali et al. 2016 Arousal and 
valence  

(four quadrants) 

 ECG 

 EDA  

 Skin temp.  

 

 (No new data 
acquired)  

Road safety; ADAS driver 
emotion recognition, test of 
neutral network (CNN); 
n=30; induction of 
emotions via video clips; 
manipulation check with 
Mankins scales of valence 
and arousal 

n.a.  92.4% accuracy of CNN 
based emotion detection 

 EDA signals provide best 
classification results 

 EDA signals extracted 
by non-intrusive 
method, seems to gain 
good results  

 

 Prototype to be 
developed and tested 
with real persons 

Balters et al. 2019 Stress 

(autonomic arousal as 
proxy for stress) 

 Respiration 

 HR, HRV 

 EDA 

 

 ECG: 
Zephyr 
BioModule  

 EDA: 
Empathica 
E4 bracelet 

 

Road safety; experiment in 
real traffic (experimental 
car); stress induced driving 
behaviour (changes in 
speed, acceleration, 
braking, lane keeping, 
steering reversal rates), 
n=16 commuters; stress 
rated on ‘Perceived Stress 
Scale’ 

n.a. Gained knowledge of in-car 
real-time stress 
management intervention. 
No results available so far 

 Real world driving 
 

 No results available yet 

 Small sample size 
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Barnard & 
Chapman 

2016 Fear  

(Arousal as indicator of 
fear/threat) 

 EDA 

 HR 

 Eye 
movements 
(saccadic 
amplitude) 

 

 Biopack 
variable 
response 
transducer 
(GEL101, 
TSD115)  

 iView X RED 
eye tracker 

Road safety; measuring 
situational threat (arousal) 
including participants with 
different levels of trait 
anxiety; arousal induced 
via videos of accidents; 
mixed design, two within 
subject factors, n=57 

 Eye 
movem. 

 Physiol. 
indicators  

Perception of fear increased 
with increased accident level 
and skin conductance can 
be used as reliable 
measurement 

 SC could serve as 
somatic marker for 
fear 

 

 Participants were 
students, university 
personal 

Bailenson  
et al. 

2007  Amusement 

 Sadness 

 EDA (SCL) 

 Body 
temperature 

 HR, Pulse 

 Blood 
pressure 

 Facial 
expression 

12-channel 

Grass Model 7 
polygraph 

Human-computer studies; 
automated real-time 
emotion-recognizer model 
for data analysis; videos 
from n=41; emotions 
induced via films 

Facial 
features 

Physiologic
al indicators 

 Good statistical fit of 
algorithms to predict 
emotions from facial 
expressions and 
physiological 
measurements 

 Physiological measures 
alone perform better than 
facial expressions alone 

 Dated study 

 More advanced 
algorithms may be 
available 

 Model includes only 
two emotions 

Chan & 
Singhal 

2015  Negative 
emotion  

 Positive emotion  

EEG sign. Geodesic Sensor 
Net 

Road safety, driving 
simulator experiment (two-
lane, bidirectional highway 
in rural setting); emotions 
induced by words from the 
Affective Norms for English 
Words database (valence 
value, arousal value); n=25 

 Speed 

 Lateral 
control 

 RT 

 Mean speed and lateral 
control sign. reduced in 
with negative words 
compared to other cond. 

 Negative emotional 
auditory content may 
reduce safe driving 

 RT was shorter in positive 
emotion than in neutral 
emotion cond. 

 No manipulation check 

 No details on 
measuring EEG 
signals reported 

Dobbins & 
Fairclough 

2018  Anger 

 Stress 

 ECG, IBI, 
HR, HRV 

 PPG, Peak-to-

peak interval, 
pulse transit 
time 

 5-lead ECG 
unit from 
Shimmer3 

 Optical pulse 
ear (PPG) clip 
from Shimmer3 

Road safety; on-road 
experiment (commuting, 
camera based: number of 
lanes, type of road, traffic 
density); n=21; self-
reported stress, anger: 
STAXI2, UWIST Mood 
Adjective Checklist 

 Self-
report of 
emotions 

 Physiol. 
indicators 
of 
emotions 

 Deriving labels for stress 
and anger based on 
physiological indicators for 
the purpose of machine 
learning was as accurate 
as based on self-reports 

 HR: lowest rate of false 
alarms 

 Pulse transit time: lowest 
rate of misses 

 Real world driving 
 

 No details/results on 
indicators of anger and 
stress provided 

 No conceptional 
definition of anger, 
stress  

Fan et al. 2010  Happiness 

 Anger 

EEG signal 192 channel 
digital brain wave 
measurement 
system from 

HFE; n=9; emotional 
states induced by videos of 
traffic situations; 
manipulation check via 

n.a. Accuracy of Bayesian 
network model to detect 
emotions of 78.17% 

 Accuracies have 
increased in more 
recent years 
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NEURO 
Company 

self-assessment (designed 
by authors)  

 Not validated with 
further material 

 Small sample size 

Gao et al. 2014  Anger 

 Disgust 
as stress related 
emotions 

Facial 
expression 

NIR-camera on 
dashboard 

HFE; data set 1 recorded 
in office setting, n=21; data 
set 2 recorded in in-car 
n=12; participants were 
asked to facially express 
the emotions in question  

n.a. Monitoring system to detect 
emotions works well on two 
simulated data sets; with 
detection rate of 85% in-car 

 Emotions were not 
induced but facially 
expressed  

 No details on NIR 
measure 

 Small sample size 

Girardi et al. 2017 Arousal, valence  EEG 

 EMG 

 EDA 

 BrainLink 
headset  

 Shimmer 
GSR+Unit 

 Shimmer 
EMG3 

 

Health care; recognition of 
high vs. low emotional 
valence and arousal by 
non-invasive low-cost 
sensors; n=19; emotions 
induced via music videos 
(DEAP data); classification 
via machine learning 

n.a. For arousal GSR and for 
valence EEG qualifies best   

 Non-invasive sensors 

 Low-cost sensors  

 Suitable for in car use 
 

 Results have to further 
validated with a larger 
sample 

 Small sample size 

 

Gotardi et al. 2018 Anxiety 

(low vs. high) 

 Eye 
movements, 
fixations per 
AOI, dwell time, 
transition 
frequency 

 HR, BPM 

 Eye tracker, 
head-mounted 
ASL H6 

 RS800CX 
wristband from 
Polar 

Road safety; simulator 
experiment (multi-lane 
highway); anxiety induced 
by i.a. peer pressure; self-
assessment on STAI-S 
and HR for manipulation 
check; n=16  

 Visual 
entropy  

 fixations 
transition  

 frequency 

 HR 

 Sign. more random 
scanning, indicating 
poorer acquisition of visual 
information under high 
anxiety condition 

 Mean HR in high anxiety 
cond. 91.41 ± 2.62 BPM 
vs. 79.43 ± 2.04 BPM 

 Impact on driving 
behaviour not reported 

 Small sample size 

 Theoretical concept of 
anxiety not explained 

 

Guo et al. 2019 Anxiety Eye 
movements 

 

 

Eye tracker 
classes from 
Tobii 

Road safety; simulator 
experiment; Anxiety 
induced by visual 
scenarios; self-assessment 
on Beck Anxiety Scale and 
Self-Rating Anxiety Scale; 
change in eye movements 
in data set detected with 
change-point model; n=36  

Eye 
movements  

Differences between anxious 
and calm episodes: 

 Mean fixation duration: 
0.92s (0.66s when calm) 

 Mean visit duration: 9.99s 
(7.34s when calm) 

 

Impact on driving behaviour 
not reported 

 Authors suggest that 
method is applicable 
for detecting 
unexpected events in 
the road environment 

 

 Type of eye tracker 
only suitable for 
simulator 

Halim & 
Rehan 

2020 Distress  

(negative valence and 
high arousal in 2D 

EEG EEG cap from 
EMOTIV EPOC+ 

 

Road safety; simulator 
experiment; driving-
induced stress; 
classification of EEG 

Con-
gruence of 
EEG 
pattern and 

SVM classifier performs best 
to distinguish between rest 
and stress state  

 Test of more than one 
classifier 
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arousal valence 
emotion model) 

patterns (classifiers: SVM, 
CNN, random forest); self-
report of emotion; n=86 

self-
reported 
emotion 

 accuracy=97.95% 

 precision=89.23%  

 sensitivity=88.83%  

 specificity=94.92% 
 

Impact on driving behaviour 
not reported 

 Only applicable in 
simulator 

 Proposed model not 
further validated yet 

Hu et al. 2018 Anger  

(no conceptual 
reference provided) 

 ECG, 
average HR, 
R-R SD 

 EEG sign. 

MP150 from 
Biopack 

Road safety; simulator 
experiment (urban 
scenario); anger induced 
by video of unfair incident, 
manipulation check via 
verbal self-report; 4 anger 
levels, n=12 young drivers 

ECG and 
EEG 
parameters 

 

 

 Sign. differences between 
four anger groups 
regarding physiological 
measures  

 Impact on driving 
behaviour not reported 

 Small sample size 

 Theoretical concept of 
emotions, anger not 
explained 

Katsis et al. 2008  Stress (high, low) 

 Disappointment 

 Euphoria 

 EMG 

 ECG 

 EDA 

 Respiration 

Multisensory 
wearable 
(balaclava, not 
commercially 
available) 

Road safety, simulator 
experiment; test of 
wearable system for car-
racing drivers; 
classification of emotions 
via SVM and ANFIS; n=10 
male car-racing drivers 

n.a. The overall classification 
rates achieved by using 
tenfold cross validation are:  

 SVM: 79.3%  

 ANIFS: 76.7%  

 Non-intrusive device 
(in balaclava and 
around thorax), good 
results 
 

 Small sample size 

 Transferability to 
average drivers not 
clear (placement of the 
sensors) 

Kolli et al. 2011  Anger 

 Disgust 

 Fear 

 Happiness 

 Sadness 

 Surprise 

Body 
temperature 
(thermal imaging) 

Infrared thermal 
camera 
‘PathFindIR’ from 
FLIR systems 

Road safety; face 
recognition algorithms and 
emotion classifiers for 
ADAS; database with 
n=35; test of three different 
algorithms  

n.a.  Morphological operation-
based algorithms with best 
performance 

 Colour-based detection 
with inconsistency, region 
growing with good result 
(thresholds difficult to set) 

 Happiness, sadness and 
disgust classified best  

 Fear could not be 
classified 

 Algorithm performance 
for emotions relevant 
for driving not 
satisfying (fear and 
anger) 

Lafont et al.  2018 Anger 

(sympathetic 
dominance hypothesis: 
HR, pupil size and 
long-term variability 
indexes of HRV 
increased and short-

 ECG, HRV 

 Eye 
measures: 
sample entropy, 
saccadic 
amplitude, pupil 

 BIOPAC 
Systems  

 Mobile Eye-
tracking 
glasses from 
Tobii 

Road safety; simulator 
experiment (urban 
environment); anger 
induced via film clips; 
neutral, slight anger and 
strong anger group; 

 Detection 
of VRU 

 Scanning 
strategy 

 Difference in visual 
scanning strategies for 
three conditions 

 No effect on VRU 
detection was reported 

 Very detailed 
documentation of 
operationalization, 
design and procedure  
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term indexes 
decreased) 

size (>100 vs. 
<100)  

manipulation check via 
self-assessment on 
Emotional Wheel; n=45 
 

HRV: LF/HF-ratio: 0.04-0.15Hz 
indicating sympathetic activity; 
0.15-0.4Hz indicating 
parasympathetic activity 

 Results are inconsistent 
with previous research as 
well as with the 
sympathetic dominance 
hypothesis (although 
manipulation seemed 
successful)  

 Inconsistency with 
previous results as 
unresolved issue 

Landowska 2014 Affective state (not 

further specified) 
 EDA 

 EMG 

 Respiration 

 EEG-Z sign. 

 Blood 
Volume (HR) 

 Temperature 

FlexComp from 
Thought 
Technology, 
Canada 

 

Human-computer studies; 
evaluation of sensors 
located on forearm and for 
sensitivity to movements 
during computer work, 
controlled experiment; 
n=31 

Subjective 
assessment 
of intrusion 

 SC sensors can be 
located on forearm: less 
intrusive than on finger, 
less sensitive to 
movement 

 Baseline personal average 
to be considered instead 
of overall mean 

 Sensor locations can 
be set on non-intrusive 
locations on the body 
 

 Transferability to 
driving not clear 

Lee et al. 2018 ‘Aggressive driving 
emotions’ 

(no further 
specification) 

 Facial 
expression 
(facial image 
analysis of 
eyes, mouth) 

 Body 
temperature 
(thermal image 
of forehead, 
cheeks) 

Near-infrared 
light thermal 
camera Tau2 
from FLIR (NIR 
band-pass filter 
attached) 

Road safety; simulator 
experiment, n=15; 
aggressive driving mode 
established by causing 
participants to make 
mistakes or introducing 
aggressive competitor in 
racing video game 

n.a. CNN classifier showed 
accuracy of 99.96% 
(combined scores from near-
infrared camera and thermal 
camera) 

 High classification 
accuracy of CNN 
classifier 

 Open source image 
database, trained CNN  
 

 No manipulation check 

 Robustness not tested 

 Small sample size 

Lisetti & 
Nasoz 

2005  Frustration, 
anger 

 Panic, fear 

 Boredom, 
sleepiness 

 EDA 

 ECG, BPM 

 Body 
temperature 

BodyMedia 
SenseWear 

Armband Polar 
chest strap 

Road safety; simulator 
experiment; n= 41, 
emotions induced via 
scenarios; test of 3 
algorithms (Marquardt-
Backpropagation, k-
Nearest Neighbor, 
Resilient Backpropagation)  

n.a. Accuracy of classifying the 
three emotions: 

 KNN 66.3%, 

 MBP 76.7%  

 RBP 91.9%  

 RBP showed good 
performance for 
classifying emotions 

 Controlled 
environment facilitates 
comparisons between 
participants  

Lotz et al. 

 

2018  Neutral  

 Positive 
emotions 
(summarized) 

 Frustration, 
anger 

 Anxiety, fear 

(circumplex model of 
emotions) 

 Speech 
recognition 
signals  

 EDA 

 ECG 

 Dashboard 
(Shure VP 82 
shotgun), 
headset mic. 
(Sennheiser 
HSP-4 EW-3) 

 Heally from 
Spacebit: 
EDA finger 
sensor, 3-lead 

HMI; test track driving 
experiment (residential 
area); emotions induced by 
Wizard-of-Oz technique 
(alleged encounter of 
autonomous vehicle), 
reinforced by staff; 
manipulation check via 
Geneva Emotional Wheel, 

n.a. Consistency of two 
annotation approaches 
shown 

 On-road experiment 
(not simulator) 

 

 Time for equipping 
participants: 20 min. 

 No results on EDA and 
ECG reported 
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ECG wearable 
and electrodes 
on chest 

Self-Assessment Manikin; 
data annotated; n=30 

Ooi et al. 2016  Stress 

 Anger 
EDA  

 

BioRadio 150 

by Great Lakes 
NeuroTechnologi
es 

Road safety; simulator 
experiment, n=20; Power 
spectral density (PSD) 
used to analyse EDA; SVM 
classifier; 10-fold cross-
validation 

EDA (PSD)  Significant differences 
between neutral-stress 
and neutral-anger by EDA 
measurements 

 Classification accuracy 
85%  

 Non-intrusive (system 
behind the wheel) 

 

 Stress and anger 
distinguished by EDA 
signals with accuracy 
of only 70% 

Paschalidis  
et al. 

2018 Stress 

 

 EDA 

 HR 
Empathica E4 
wristband 

 

Road safety; simulator 
experiment (urban 
environment); stress 
induced by time pressure; 
n=41 

Gap-
acceptance 
behaviour 

Increased stress levels 
significantly increased 
probability of accepting a 
gap 

 No manipulation check 

 No details on EDA, HR 
outcomes 

Rebolledo-
Mendez et al. 

2014 Stress 

 

 EDA 

 Neural data 

 Affectiva´s Q 
sensor (EDA) 

 NeuroSky’s 
MindWave 

Road safety; feasibility of 
detecting emotional state 
in field experiment, n=24; 
urban vs. highway; drivers 
classified own emotions 
(concentrated, tension, 
tired, relaxed) 

n.a.  SCL correlated sign. with 
self-reports, preliminary 
model of a driver state 
recognition modul for 
OBU. 

 Middleware architecture to 
detect emotions proposed 
(communicated via OBU) 

 Architecture of 
measuring emotions 
while driving and 
integrating information 
in the OBU 

 

 Reliability of self-
reports 

Rodrigues et 
al. 

2015 Stress ECG, HRV Vital Jacket 

 

Occupational health, on-
road experiment; testing 
mobile sensing to detect 
physiological and 
psychological stress; n=36 
bus drivers; drivers 
geofenced stress events 
by pushing button  

n.a.  HRV correlates with stress 
events 

 Less cardiac response of 
experienced bus drivers 

 Stress map for bus drivers 
derived from the data 

 effect on driving behaviour 
not investigated 

+ Non-intrusive, easy to 
use system (t-shirt) 

 Tested in real world 

Villarejo et al. 2012 Stress EDA, GSR No information 
provided 

Medicine, n=16; 
experiment including 
different tests requiring 
certain degree of effort 

n.a.  GSR device differs 
between relaxed and 
situation requiring effort 
with accuracy of 90,97% 

 no differentiation between 
being stressed and 
making an effort 

 Pre-mature device, 
does not perform 
sufficiently  

 Small sample size 

Zhang et al. 2019, 
2018 

 Fear  
(represented as 

Emotional power:  Infrared 
thermography 

Road safety; simulator 
experiment (urban 

Forehead 
temperature 

 Reduction of forehead 
temperature after threat 

 Indication that 
forehead temperature 
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Authors Year 
Theoretical 
constructs 

Indicators 
Technical 
equipment 

Context & Design 
Outcome 
variables  

Results Conclusion 
(for i-DREAMS) 

dimension of 
emotional power in 
Fontaine’s four-dim. 
emotional space) 

 Emotional 
arousal 

 Body 
temperature 
of forehead, 
nose, finger 
(facial image 
analysis)  

 

Emotional arousal: 

 ECG, 
average IBI 

 EDA, SCL 

camera ‘PI640’ 
from Optris 

 Finger sensor 
and ECG 
sensors (chest) 
‘Heally’ from 
SpaceBit 

scenarios); n=18; fear 
induced by threat and 
challenge events in driving; 
within-subject design; 
manipulation check via 
self-report on Positive and 
Negative Affect Schedule 
and Self-Assessment 
Manikin 

events (M= -0.02°), 
SD=0.08°C);  

 Forehead temperature did 
not correlate sign. with 
arousal (SC and IBI) 

 SCL (indicator of arousal) 
did not differentiate 
between fear vs. no-fear 

 Impact on driving 
behaviour not reported 

can be used to 
measure 

 Infrared camera non-
intrusive, contact-free 
 

 Small sample size 

 Accuracy of facial 
temp. measure might 
be sensitive to ambient 
temp. 

Zimasa et al. 2019  Happiness 
(positive+high 
arousal) 

 Sadness (negative 

valence/low arousal) 

 Anger  
(negative 
valence/high 
arousal) 

Arousal: 

 EDA 

 HR, BPM 
 
Valence:  

 Self-reported 

 ‘E4’ wristband 
from Empatica 

 Eye tracker 
‘faceLAB 5’ 
from Seeing 
Machines 

 

Road safety; simulator 
experiment; n=40; 
emotions induced via 
music and mental imagery, 
manipulation check with 
self-reports on mood 
assessment grid (valence) 
and physiology (arousal); 
within-subject design  

 Attention 
(mean 
duration 
and 
spread of 
fixations) 

 Car 
following 
behaviour 

 Sign. increase in fixation 
duration while sad  

 Decrease in fixation 
duration in neutral mood, 
compared to happy, angry 
(high arousal), indicates 
improvement in attentional 
shift, inform. processing  

 Neutral mood: wider visual 
field compared to high 
arousal  

 No clear results on time 
headway 

 No details on EDA and 
HR parameters 
provided 
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Annex F: Technology review on measuring the driver’s mental state 

Table 30: Overview of devices and technical equipment used in the reviewed studies on measuring attention, fatigue and sleepiness and emotional states and stress 

Product/company 
name 

and contact 
Constructs 
measured 

Equipment, 
measurement 

method 
Intrusive-

ness Indicators 

Relevant information for 

i-DREAMS 
Overall assessment and considerations 

Seeing machines 

https://www.seeingmac
hines.com/  

 Fatigue, 
sleepiness 

 Distraction 

 In-cab sensor 

 Cameras facing 
forward and driver 

Contact free Face and eye tracking 
indicators 

 Used in truck fleets 
 Planned to be used on UK rail network 

(https://www.smartrailworld.com/driver-anti-sleep-seeing-machines-
device-uk-rail-safety-regulator) 

 Already implemented in trams in Croydon following tram crash 

 Can be designed to issue alerts 

 Established product 

 Would need installation and training on use/analysis 

Vigo 

https://www.wearvigo.c
om/  

 Drowsiness, 
alertness 

 Distraction 

 Headset 

 Head, eyes tracking 
Medium Vision based: 20+ eye 

/head tracking 
parameter 

 Real time performance monitoring 

 Can be implemented across fleets 

 Established product 

 Would need installation and training on use/analysis 

 Requires driver to wear headset 

 Minimal information available  

Optalert 

https://www.optalert.co
m  

 Drowsiness, 
alertness 

 Distraction 

Video cameras on 
dashboard, steering 
wheel 

Contact free Vision based: eye 
tracking, facial 
features, amplitude 
and velocity ratio of 
blinks 

 Issues early warnings  

 Driver does not need to wear or do anything  

 Established product 

 Would need installation and training on use/analysis 

 Licensable software 

Cardio wheel 

https://www.cardio-
id.com/cardiowheel  

 Sleepiness, 
drowsiness 

 Attention 

 Stress 

Sensors on steering 
wheel  

Low ECG, HRV  Contact of both hands to steering wheel required 

 Requires custom steering wheel 

 Dashboard for fleets of vehicles  

 Can be integrated with certain third-party systems 

 Un-intrusive 
 

Smart eye 

https://smarteye.se/ 

 Fatigue, 
sleepiness 

 Attention, alertness 

Eye tracking cameras 
on dashboard 

Contact free Vision based: eye, face 
and head tracking 

 Non-intrusive 

 Driver does not need to wear or do anything  

 Developed for automotive industry 

 Established product 

 Would need installation and training on use/analysis 

Phasya 

https://www.phasya.co
m/en  

 Drowsiness 

 Stress 

Any equipment used to 
measure aspects of 
driver state 

Dependent on 
equipment used  

Vision based, eye 
tracking: PERCLOS, 
facial features, 

 Software 

 Range of modules available 

https://www.seeingmachines.com/
https://www.seeingmachines.com/
https://www.smartrailworld.com/driver-anti-sleep-seeing-machines-device-uk-rail-safety-regulator
https://www.smartrailworld.com/driver-anti-sleep-seeing-machines-device-uk-rail-safety-regulator
https://www.wearvigo.com/
https://www.wearvigo.com/
https://www.optalert.com/
https://www.optalert.com/
https://www.cardio-id.com/cardiowheel
https://www.cardio-id.com/cardiowheel
https://smarteye.se/
https://www.phasya.com/en
https://www.phasya.com/en
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Product/company 
name 

and contact 
Constructs 
measured 

Equipment, 
measurement 

method 
Intrusive-

ness Indicators 

Relevant information for 

i-DREAMS 
Overall assessment and considerations 

 Distraction, mind 
wandering 

 Cognitive load 

HR, blink duration, 
pupil diameter, facial 
images 

 Offers test and validation of physiological and cognitive state 
monitoring systems 

 Software can be used within rail and automotive industry. 

 

Texas Instruments 
Biometric Steering 
Wheel 

http://www.ti.com/tool/
TIDA-00292 

 ‘Driver state’ Sensors on steering 
wheel, measuring 
pulse, respiration, HR 

Low ECG heart rate, pulse 
rate, respiration rate 

 Contact of both hands to steering wheel required 

 Non-intrusive  

 Unsure of validation  

Veoneer LIV – Driver 
monitoring system 

https://www.veoneer.c
om/sites/default/files/V
eoneer_Meet%20LIV_
Aug29.pdf  

 Fatigue 

 Attention 

 Environment 

Uses external and 
internal sensors, 
combined with AI 

Contact free   Is not a single system or component but an equipped car 

BioRadio by Great 
Lakes 
NeuroTechnologies 

https://glneurotech.co
m/bioradio/ 

 

 Emotions (anger) 

 Stress 

 Attention 

 Fatigue 

Electrodes attached to 
finger 

Medium EDA  Used for clinical research 

 use only with assistance of project team 

BIOPAC Systems, 

BioNomadix® Logger 

https://www.biopac.co
m/product-
category/research/bion
omadix-wireless-
physiology/ 

 Emotions (anger, 
fear) 

 Attention 

 Fatigue 

Electrodes attached to 
the body 

Medium ECG 

EDA 

Temperature 

 

 Electrodes are placed once, then connected to the wearable 
recording system,  

 can be used with other devices (e.g. eye tracking) 

Empatica E4 
Wristband 

https://www.empatica.c
om/en-eu/research/e4/ 

 

 Fatigue 

 Attention 

 Emotions (arousal) 

Wristband with sensors Low EDA Sensor 

 

 

 Seems easy to use 

 Battery runs 48h 

 additional equipment: 3-axis Accelometor to capture motion-
based activity, event-mark button 

FlexComp from 
Thought Technology 

 Emotions (affective 
state) 

Electrodes attached to 
fingers 

Medium HRV, 

EDA 

 Mainly used for biofeedback 

http://www.ti.com/tool/TIDA-00292
http://www.ti.com/tool/TIDA-00292
https://www.veoneer.com/sites/default/files/Veoneer_Meet%20LIV_Aug29.pdf
https://www.veoneer.com/sites/default/files/Veoneer_Meet%20LIV_Aug29.pdf
https://www.veoneer.com/sites/default/files/Veoneer_Meet%20LIV_Aug29.pdf
https://www.veoneer.com/sites/default/files/Veoneer_Meet%20LIV_Aug29.pdf
https://glneurotech.com/bioradio/
https://glneurotech.com/bioradio/
https://www.empatica.com/en-eu/research/e4/
https://www.empatica.com/en-eu/research/e4/
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Product/company 
name 

and contact 
Constructs 
measured 

Equipment, 
measurement 

method 
Intrusive-

ness Indicators 

Relevant information for 

i-DREAMS 
Overall assessment and considerations 

http://thoughttechnolog
y.com/index.php/compl
ete-systems.html 

Shimmer 3, including 
PPG ear clip 

http://www.shimmerse
nsing.com/ 

products/shimmer3-
wireless-gsr-sensor 

 Emotions (arousal, 
valence, anger) 

 Stress 

 Fatigue, 

 Attention 

Electrodes positioned 
on chest or arms 

Medium ECG  Electrodes are placed on participant fixed for each trial 

 used in laboratory research 

 can be used with other devices 

Shimmer 3 GSR unit, 
EMG3 

http://www.shimmerse
nsing.com/ 

 

 Emotions (arousal, 
valence, anger) 

 Stress 

 Fatigue 

 Attention 

Electrodes attached to 
two fingers 

Medium EMG  Electrodes are placed on participant each trial 

 used in laboratory research 

 Cannot be used together with Shimmer 3, which measures 
ECG 

Vital jacket 

www.vitaljacket.com 

 

 Stress T-shirt with implantable 
body sensor networks 

Low ECD, HR  Seems easy to use 

 records physiological measures 72h on SD card 

Zephyr BioModule 

https://www.zephyrany
where.com 

 

 Stress (arousal) T-Shirt or as wristband Low ECG  Is used in sports for training feedback and stress 
measurements 

 Customized system can be acquired with different 
components. 

Eye-tracking glasses  Fatigue, 
sleepiness 

 Attention 

 Emotions (anxiety) 

Eye-tracking light 
classes 

Medium Vision based: mean 
fixation time 

 Calibration of eye tracker might be time-consuming 

 Not suitable for on-road trials 

Near-infrared light 
thermal camera (e.g. 
Tau2 or PI640 from 
Optris) 

 Fatigue 

 Emotions 

 Stress 

 Contact free Thermal imaging  Non-intrusive 

 

http://thoughttechnology.com/index.php/complete-systems.html
http://thoughttechnology.com/index.php/complete-systems.html
http://thoughttechnology.com/index.php/complete-systems.html
http://www.shimmersensing.com/
http://www.shimmersensing.com/
http://www.shimmersensing.com/
http://www.shimmersensing.com/
http://www.vitaljacket.com/
https://www.zephyranywhere.com/
https://www.zephyranywhere.com/

